
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Generative	AI	as	Mathland	and	Constructionist	Frontier	
Logo	traditions,	computational	fluency,	and	emerging	technology	converge	to	create	new	opportunities	to	amplify	

the	potential	of	each	learner	

The	recent	availability	of	generative	artificial	intelligence	systems,	such	as	ChatGPT,	has	captured	the	imagination	of	the	public	
and	 schools.	 Amidst	 the	 fearmongering	 and	 hype	 surrounding	 AI,	 its	 inevitability	 causes	 educators	 to	 either	 scream	 their	
objections	into	the	abyss	or	resign	themselves	to	being	passive	consumers	of	the	technology.	The	work	of	constructionists,	like	
Papert,	Solomon,	and	Minsky	suggests	a	third	option;	children	developing	sufficient	computational	fluency	to	gain	agency	over	
the	technology	and	face	the	future	with	personal	empowerment.	Realizing	this	aspiration	calls	on	timeless	Logo	traditions,	respect	
for	learners	(and	their	teachers),	and	an	awareness	of	emerging	technology.	This	paper	explores	work	recently	undertaken	with	
fifth	thru	eighth	grade	students	and	educators	across	the	globe.	The	confluence	of	the	public’s	fascination	with	new	technology	
and	calls	for	widespread	computer	science	education,	creates	an	unprecedented	opportunity	for	constructionists	to	assert	our	
pedagogical	expertise,	design	better	computing	environments	for	learners,	increase	computational	fluency	across	disciplines,	and	
make	schools	better	places	for	children.		

Keywords	 and	 Phrases:	 Generative	 AI,	 ChatGPT,	 Logo,	 Computational	 Fluency,	 Wolfram	 Language,	 Linguistics,	
Symbolic	Programming	

1 INTRODUCTION	
The	 release	 of	 ChatGPT	 and	 similar	 generative	 artificial	 intelligence	 systems	 will	 undoubtedly	 accelerate	 the	
development	 and	 availability	 of	 increasingly	 sophisticated	 software.	 Ignorance	 of	 the	 technology	 has	 led	 to	 an	
unprecedented	cacophony	of	hype	and	hysteria.	The	only	conclusion	one	can	reach	by	the	proliferation	of	LinkedIn	
bios	in	which	my	contacts	declare	themselves	“AI	in	Education	Expert”	or	the	abundance	of	conference	presentations	
suddenly	about	educational	AI	is	that	education	was	apparently	revolutionized	over	the	Christmas	holidays	of	2022.	
The	very	same	edtech	influencers	eager	to	cash-in	on	the	latest	AI	craze	are	the	very	people	who	have	stood	in	the	
way	of	Papertian	uses	of	computers	 in	education	for	decades.	Many	are	what	Papert	used	to	call,	“idea	averse.”	
(Papert,	2000)	
The	 rhetoric	 surrounding	ChatGPT	 appears	 to	miss	 the	 greatest	 arguments	 for	 constructionist	 learning	 and	

computer	use	in	the	style	of	what	Seymour	Papert	and	his	colleagues	advocated.	In	an	age	of	rising	authoritarianism,	
concerns	 of	 democratic	 erosion,	 accusations	 of	 fake	 news,	 and	misinformation	 it	 is	 critical	 to	 answer	 Papert’s	
question,	“Does	the	child	program	the	computer,	or	the	computer	program	the	child?”	On	the	side	of	the	child.		
While	 the	 explosion	 in	 interest	 in	 technology	may	 represent	 a	 positive	 force	 for	 those	of	 us	who	have	 long	

advocated	for	educational	computing,	my	fear	is	that	“AI	in	education”	will	achieve	the	same	fate	as	the	pathetic	
efforts	at	“computer	science	for	all.”	Although	computer	science	for	all	is	a	noble	objective,	its	implementation	has	
been	led	by	policy	makers,	with	little	actual	computing	expertise,	resulting	in	vocabulary	acquisition,	“Hour	of	Code”	
puzzles,	 and	 denatured	 experiences,	 like	 Computer	 Science	 Unplugged,	 as	 if	 computers	 were	 unavailable.	

2	

Computing	 and	 artificial	 intelligence	 are	 too	 important	 and	 hold	 so	 much	 potential	 for	 progressive	 school	
improvement	to	be	left	to	charlatans,	textbook	publishers,	and	tech	billionaires	harboring	longstanding	contempt	
for	public	education.	
Constructionists,	 standing	 on	 the	 shoulders	 of	 the	 Logo	 community	 and	 its	 long-standing	 traditions	 of	

progressive,	project-based	 learning	experiences	have	an	opportunity	 and	 responsibility	 to	 lead	K-12	education	
making	sense	with	and	of	artificial	intelligence.	

“And	as	we	grow	up,	we	should	stop	seeing	ourselves	as	specialists	of	computers	in	education,	because	
that	casts	us	in	the	role	of	a	kind	of	service	profession.	Accepting	the	role	allows	that	other	people	are	the	
ones	to	decide	the	big	goals	of	education,	what	the	curriculum	is,	how	learning	happens,	what’s	a	school.	
And	at	our	conferences	we	talk	about	how	their	decisions	can	be	served	by	the	computers.	Well,	fine,	up	
to	a	point.	This	certainly	allows	revolutionary	actions	as	 long	as	we	are	at	the	stage	of	crafting	Trojan	
horses	to	throw	into	the	system.	But	at	some	point,	we	have	a	responsibility	to	break	out	of	that	marginal	
role	and	take	on	our	true	vocation,	which	is	not	one	of	service	but	one	of	leadership.”	(Papert,	1991)		

Our	 allies	 in	 leading	 education	 in	 the	 age	 of	 AI,	may	 once	 again	 be	 the	 sorts	 of	mathematicians,	 scientists,	
computer	scientists,	artists,	philosophers,	epistemologists,	and	progressive	educators	present	at	the	birth	of	Logo	
fifty-five	years	ago.	

2 AN	INTERVENTION	
As	a	longtime	proponent	of	teaching	children	to	program	computers	in	a	Logo-like	environment,	I	continue	to	push	
that	rock	up	the	metaphorical	hill	of	apps,	verbal	inflation	(Papert,	2006),	and	disappointment.	Kids	are	capable	of	
doing	 so	 much	 with	 computers	 but	 are	 rarely	 afforded	 the	 opportunity	 to	 do	 so.	 Constructing	 knowledge	
computationally	would	be	of	great	benefit	for	what	Papert	called	“learning	learning”.	In	Logo	environments,	the	
child	does	the	work	of	the	computer	by	thinking	about	how	to	communicate	a	sequence	of	formal	instructions	and	
then	either	debugging	the	errors	in	their	thinking	or	building	upon	their	success.	This	process	of	engaging	with	
transitional	objects,	 in	many	cases	the	Logo	turtle,	concretizes	abstract	concepts	that	are	then	presented	to	the	
computer	formally	in	a	reciprocal	and	generative	“conversation.”	Yet,	even	in	the	“best”	Logo	classrooms1,	far	too	
few	students	experience	the	epiphany	associated	with	reaching	the	tipping	point	at	which	you	stop	working	for	the	
computer	and	the	computer	begins	working	for	you.	Bossing	the	turtle	around	provides	a	certain	measure	of	joy,	
but	mastering	computational	thinking	allows	the	computer	to	solve	problems,	create,	and	increase	productivity	in	
ways	previously	impossible.	
	

“Computational	 thinking	 provides	 a	 framework	 that	 makes	 things	 more	 transparent	 and	 easier	 to	
understand.	When	you	formulate	something	computationally,	everyone	can	try	it	out	and	explicitly	see	
how	it	works.	There’s	nothing	hidden	that	the	student	somehow	has	to	 infer	from	some	comment	the	
teacher	made.”	(Wolfram,	2016b)	

	
Stephen	Wolfram’s	 recent	 calls	 to	 teach	 computational	 thinking	mirror	 those	made	 by	 Papert	 decades	 ago.	

Teaching	 more	 Logo	 functionality	 to	 students	 seemed	 like	 the	 obvious	 path	 towards	 developing	 greater	

1 Or its dialects and derivations, including Scratch, Snap!, MakeCode, etc…

3	

computational	fluency.	This	required	introducing	the	“other	half”	of	computer	languages	absent	from	the	school	
curriculum;	reporters	or	functions.	Asking	children	to	call	out	Logo	primitive	procedures	with	zero,	one,	or	two	
inputs,	 followed	by	the	creation	of	simple	reporter	procedures	capable	of	producing	an	arithmetic	result,	was	a	
quick	way	of	introducing	reporters,	using	variables,	understanding	the	arbitrary	nature	of	naming,	discussing	how	
Logo	 is	a	prefix	 language,	 illustrating	the	grammar	of	Logo	expressions,	and	 laying	the	 foundation	 for	symbolic	
programming.	I	deliberately	create	some	bugs,	such	as	starting	the	computer	instruction	with	a	reporter,	instead	of	
a	 command;	 demonstrating	 	 how	 reporters	 report	 and		
“something	needs	to	catch	that	result.”	Logo	requires	expressions	to	begin	with	a	command.	
	
to gary :foo

output (:foo * 3) + 7

end

to double :x

output :x * 2

end

	
or	
	
to dub :number

output :number + :number

end

	
double 5

I	don’t	know	what	to	do	with	10	
	
show double 5

10	
	

show double gary 5

44	
	
Forward	double	double	double	5	
	

	

2.1 Linguistic	Patterns	

After	getting	the	hang	of	creating	arithmetic	reporter	procedures	and	understanding	that	the	reporters	report	to	
commands,	I	introduced	a	classic	Logo	programming	project,	Gossip,	immortalized	in	the	book,	Exploring	Language	
with	Logo,	(Goldenberg	&	Feurzeig,	1987)	but	likely	invented	years	earlier	at	the	MIT	Logo	Lab.	This	project	uses	
reporters	 that	 randomly	 assemble	 insults	 for	 classmates	 and	 friends.	 Although	 each	 of	 the	 building	 blocks	
(subprocedures)	in	the	project	follow	the	same	simple	format,	they	may	arranged	in	different	order	to	build	more	
sophisticated	gossip	or	insults.	Along	the	way,	the	concept	of	Logo	lists	is	introduced,	along	with	lists	of	lists.	Pick	
is	a	reporter	that	returns	a	random	item	found	in	a	list.	2	

to person

output pick [Seymour Paulo Artemis

Cynthia]

end

show person

Artemis	

2 All of the Logo examples used in this paper were created in Lynx, a web-based version of MicroWorlds, a
popular Logo dialect. The terms, Lynx and Logo, will be used interchangeably in this text.

	
Show person

Paulo	
	

	

4	

Now	 let’s	 add	 a	 procedure	 to	 report	 a	 random	
verb.	
	
to person

output pick [kicks loves likes kisses

smells [laughs at] [plays with]]

end

	
Show doeswhat

likes	
	
Show doeswhat

plays	with	

	
Next,	smoosh	everything	together	into	a	sentence.	I	explain	to	students	that	must	of	computer	programming	

involves	taking	things	apart	or	putting	them	together.	The	reporter	sentence	will	do	the	trick.	
	
to insult

output (sentence person doeswhat person)

end

	
show insult

Seymour	laughs	at	Cynthia	
	
show insult

Artemis	kicks	Paulo	
	
show insult

Seymour	loves	Seymour	
	

Try	something	like	this	to	generate	lots	of	insults	and	
look	for	patterns:	

repeat 10 [show insult]

	
Once	the	computer	generates	an	insult	where	the	same	person’s	name	is	reported	twice,	there	is	an	opportunity	

to	discuss	strategies	for	“making	the	program	more	intelligent.”	You	could	have	two	different	lists	of	people	person1	
&	person2	used	in	insult.	Another	strategy	could	be	to	check	if	it	picks	a	person,	keep	track	of	that	value,	and	don’t	
pick	the	same	person	again.	
Can	you	create	an	adjective	or	adverb	procedure	that	picks	random	words	for	those	parts	of	speech?	Where	

would	you	put	those	procedures	in	insult?	Can	you	create	a	variation	of	this	project	to	generate	haiku?	How	about	
MadLibs?	

2.2 Rules,	Logic,	Exceptions,	and	Words	

The	next	step	in	the	process	is	to	experiment	with	teaching	the	computer	linguistic	rules	so	that	it	may	create	a	
reporter	procedure	to	transform	any	English	word	into	its	plural	 form.	In	essence,	we	are	creating	the	seeds	of	
grammar	checking	software.	The	pedagogical	approach	is	to	ask	the	plural	procedure	to	pluralize	a	word,	see	if	
the	result	 is	accurate,	and	then	make	the	program	“smarter”	to	address	the	exception	to	the	rule.	This	requires	
students	to	engage	in	program	debugging	by	deliberately	creating	bugs	to	run	afoul	of	the	program’s	ever	improving	
logic/intelligence.	Test	a	word	in	plural,	if	the	result	is	correct,	search	for	a	word	that	might	be	troublesome.	If	it	
is	incorrect,	build	greater	intelligence	into	the	software	by	adding	a	new	conditional	line	(if…).	The	if	reporter	
takes	two	inputs,	the	condition	it	tests	to	indicate	true	or	false	and	the	list	of	instructions	to	execute	if	the	condition	
is	true.	This	process	also	allows	for	exceptions	in	the	English	language	to	be	“hard-wired”	into	the	procedure;	for	
example,	turning	man	into	men.	The	word reporter	takes	two	or	more	letters	or	words	as	input	and	sticks	them	
together	as	one	word	before	outputting	them.	The	formal	name	for	this	process	is	concatenation.		
The	following	are	a	few	iterations	of	the	sort	of	plural	procedure	students	might	develop.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

to plural :ourword

output (word :ourword "s)

end

show plural “truck

trucks	
	
show plural “class

classs	
	
to plural :ourword

if (last :ourword) = "s [output

word :ourword "es]

if :ourword = "mouse [output "mice]

output (word :ourword "s)

end

show plural “cherry

cherrys	

to plural :ourword

if (last :ourword) = "s [output

word :ourword "es]

if :ourword = "mouse [output "mice]

if (last :ourword) = "y [output word

bl :ourword "ies]

output (word :ourword "s)

end

show plural “boy

boyies	

to plural :ourword

if :ourword = "boy [output "boys]

if (last :ourword) = "s [output

word :ourword "es]

if :ourword = "mouse [output "mice]

if (last :ourword) = "y [output word

bl :ourword "ies]

output (word :ourword "s)

end

show plural “box

boxs	
	
show plural “church

churchs		
	

to plural :ourword

if :ourword = "boy [output "boys]

if (last2 :ourword) = "ch [output

word :ourword "es]

if (last2 :ourword) = "sh [output

word :ourword "es]

if (last :ourword) = "x [output

word :ourword "es]

if (last :ourword) = "y [output word

bl :ourword "ies]

if :ourword = "moose [output "moose]

if (last :ourword) = "s [output

word :ourword "es]

if :ourword = "mouse [output "mice]

output (word :ourword "s)

end

last2 is	a	helper	reporter	that	efficiently	finds	the	last	two	letters	of	a	word	and	reports	them	to	be	used	in	
the	conditionals	inside	plural.	This	procedure	is	typically	built	with	the	students	after	playing	with	the	reporters,	

6	

first, last, butfirst (bf), and butlast (bl).	These	reporters	report	parts	of	a	word	or	list.	Space	
limitations	do	not	allow	us	to	explore	these	reporters	in	greater	detail.

to last2 :z

output word last butlast :z last :z

end	
	
Playing	with	language	in	this	context	not	only	teaches	a	good	number	of	computer	science,	programming,	and	

debugging	 techniques,	 it	 also	 affords	 students	 with	 opportunities	 to	 think	 linguistically,	 mathematically,	
epistemologically,	and	computationally.	These	habits	of	mind	are	crucial	when	thinking	about	teaching	computers	
to	think.	
Best	 of	 all,	 the	 tacit	 curriculum	worked	 perfectly.	 During	 the	 plural	 programming	 project,	 a	middle	 school	

student	exclaimed,	“Hey!	This	is	just	like	AI!”	

3 IS	YOUR	AI	SMARTER	THAN	A	SECOND	GRADER?	
Upon	encountering	ChatGPT	for	the	first	time,	I	decided	to	put	it	through	its	paces.	I	was	not	surprised	when	it	did	
a	terrible	job	of	arguing	about	Seymour	Papert’s	contributions	or	the	pedagogical	practices	of	Maria	Montessori,	
but	could	it	do	second	grade	math?	I	was	uncertain	about	its	arithmetic	abilities	since	I	understood	enough	about	
how	generative	AI	worked	to	understand	that	it	was	essentially	predicting	text	responses	based	on	trained	patterns.	
So,	I	asked	it	to	show	me	a	list	of	“dollar	words,”	a	second	grade	math	activity	based	on	a	book	(Burns	&	Weston,	

1991)	by	elementary	math	educator	and	author,	Marilyn	Burns.	The	riddle	of	dollar	words	is,	“If	A=1	cent	and	Z=26	
cents,	can	you	think	of	words	in	the	English	language	where	the	sum	of	the	value	of	each	letter	adds	up	to	equal	
$1.00?	A	constructionist	teacher	would	let	students	figure	out	a	way	to	think	about	the	problem,	organize	a	decoding	
device,	and	check	their	work	without	much	teacher	intervention,	other	than	asking	more	questions,	such	as,	“Is	that	
a	dollar	word?”	“How	do	you	know?”	“Can	someone	please	check?”	
Had	ChatGPT	told	me	that	it	did	not	know	anything	about	dollar	words,	I	would	not	have	been	surprised.	After	

all,	 its	métier	 is	 predictive	 text.	However,	 the	 prompt,	 “Can you give me a list of dollar words?”	Resulted	 in	 the	
following	response.	

Sure, here's a list of some "dollar words" in the English language, where the sum of the values of their letters (A=1,
B=2, C=3, etc.) equals 100:

abracadabra alfalfa anagrams antidote applicant articulate ascertain associate bacteria benefactor
bequeath characteristic chandelier countryside culmination customary cylindrical defamation deliberate democracy
denominator deprecate dermatology destruction detrimental differentiate disadvantage disinterested dissertation education
effervescence elaboration electricity elementary elliptical emanation empowerment encyclopedia energizer enthusiast
equilibrium equivalent eucalyptus evangelist examination exceptional excitement exclamation exemplify exonerate
expectation expedition experimenta

l
explanation extemporize extraordinary extrapolate fabrication fascination fastidious

feasibility federation flexibility formulation foundation fraternity freelancer frivolous functionality generosity
gentleman geographer germination girlfriend gratuitous hallucination harmonious helicopter heterosexual hierarchical
hilarious homogeneity homogenize humiliation hypothetical identification illegitimate illustration imagination implementation
impregnate improvisation incantation incapacitate incoherent independence indifference individuality infallible infringement

	
Immediately,	my	BS	detector	smelled	a	rat.	Some	of	these	hundred	words	could	not	possibly	add	up	to	be	worth	

100	cents.	So,	I	told	ChatGPT,	“There are countless errors in this list of words provided.”
It	replied, “I apologize for any errors that may have been present in the list of dollar words that I provided. As an

AI language model, I strive to provide accurate information, but I am not perfect and may occasionally make mistakes.

7	

If you notice any errors in the list, please feel free to let me know and I will do my best to correct them. Thank you for
your understanding.” It	then	gave	me	another	hundred	words	mostly	populated	by	entries	whose	value	was	not	a	
dollar.	
I	replied,	“The sum of the numerical value of each letter (1-26) does not equal 100 in many of the words you provided.

If you were a 2nd grade student, you would receive an F.”	and	ChatGPT	reassured	me	that	it	understood	the	error	of	
its	ways,	“I apologize for the confusion and the errors in the previous list. As you have pointed out, some of the words
I provided did not have a numerical value sum of 100 based on the A=1, B=2, C=3, etc. system. Here is a corrected list
of dollar words:”	and	then	it	provided	more	junk.	This	cat	and	mouse	game	repeated	several	times.	The	results	did	
not	improve	in	accuracy	no	matter	how	solicitous	ChatGPT	became.		
By	this	point,	I	had	hundreds	of	words	to	check	the	arithmetic	of	ChatGPT.	I	needed	to	do	some	programming!	
	
to value :word

if empty? :word [op 0]

output (ascii first :word) - 96 + value

bf :word

end

to dollar? :word

output 100 = value :word

end

	
show ascii “a

97	

show value “alfalfa

39	
	
Show dollar? “alfalfa

False	
	
Turning	each	letter	of	a	word	into	its	“monetary”	value	required	converting	the	letter	into	its	ASCII	value	and	

then	subtracting	96.	Value	has	the	job	of	reporting	the	value	of	a	word,	using	the	dollar	words	algorithm.	Dollar?	
Is	a	predicate	procedure	that	reports	true	or	false.	This	will	be	handy	in	more	elaborate	procedures.	
	

3.1 Reengaging	the	Students	

It	was	time	to	involve	students	again.	I	told	them	about	dollar	words,	asked	them	to	think	of	word	that	might	be	
worth	one	dollar,	and	then	assisted	the	process	by	sharing	some	of	the	riddles	found	in	the	Burns	book.	Once	the	
students	seemed	to	understand	the	mathematical	rules,	I	projected	a	series	of	slides	I	designed	featuring	the	prompt	
I	gave	ChatGPT	and	its	response,	along	with	the	list	of	hundred	words	it	dispensed.	The	students	were	quite	willing	
to	 trust	 the	 results	 until	 I	 urged	 them	 to	 look	 for	 errors	 in	 the	 data.	 Few	 if	 any	made	 an	 effort	 to	 interrogate	
ChatGPT’s	results	without	my	coaxing	and	then	they	still	needed	to	brainstorm	ways	for	fact-checking	the	data	–	
use	a	calculator,	write	out	the	letter	values	on	a	sheet	of	paper,	predict	that	alfalfa	probably	is	not	a	dollar	word	
given	how	many	As	it	contains…	

8	

I	then	showed	them	the	value	procedure	I	created	and	we	began	checking	ChatGPT’s	work	as	a	class.	3With	
more	time,	I	could	have	written	a	Logo	program	with	or	for	the	students,	depending	on	their	level	of	understanding,	
to	“eat”	through	all	of	the	words	ChatGPT	produced	in	order	to	flag,	count,	or	collate	any	words	that	might	actually	
be	dollar	words.	Such	a	task	would	have	introduced	recursion	and	the	programming	trope	of	eating	through	a	list	
and	performing	some	calculation	on	it.	Beginning	with	the	plural	programming	exercise	and	continuing	through	
dollar	words,	students	were	gaining	firsthand	experience	with	symbolic	programming,	the	process	of	manipulating	
symbolic	expressions	and	programs	themselves.	This	 is	a	powerful	 idea	underlying	generative	AI	and	a	host	of	
programming	scenarios.	

3.2 We	Can	Create	Our	Own	Nonsense	
Next,	 I	walked	students	 through	some	procedures	 I	created	to	generate	random	words	of	a	variable	number	of	
letters	long.	I	asked	students	to	share	an	argument	for	the	shortest	words	in	the	English	language	likely	to	produce	
random	words	in	which	sum	of	the	value	of	each	letter	added	up	to	equal	a	dollar.	Students	quickly	arrived	at	4	
letters,	but	then	realized	that	it	was	unlikely	that	a	four-letter	word	would	be	a	dollar	word,	since	Z	=	26.		
	

to assemble

make "newword "

repeat 5 [make "newword word :newword char (1 + random 26) + 96]

show :newword

end

Typing assemble causes	Logo	to	generate	a	new	word	and	display	it	in	the	command	center.	The	number	of	
times	specified	in	the	repeat	line	determines	the	length	of	the	word.	This	programming	required	the	introduction	
of	global	variables	to	the	mix,	in	the	form	of	the	Logo	command,	make.	If	students	cannot	completely	understand	or	
create	 their	 own	 procedures,	 such	 as	 assemble,	 they	 can	 read,	 modify,	 and	 execute	 procedures	 I	 provide.	
Experience	with	such	code	will	lead	to	understanding.

More	sophisticated	fun	and	scientific	experimentation	was	possible	if	we	asked	an	infinite	number	of	monkeys	
to	sit	at	an	 infinite	number	of	 typewriters	 to	produce	random	words.	This	project	was	now	 in	 the	spirit	of	 the	
“overnight”	 Logo	 projects	 Brian	 Silverman	 and	Mitchel	 Resnick	 began	 exploring	 in	 the	 1990s.	We	 have	 nearly	
limitless	computing	power,	in	school	computers	alone,	that	is	not	being	used	for	most	of	the	day.	Imagine	if	we	could	
harness	that	resource?	(Resnick,	1993)	

I	 created	 two	 textboxes	 on	 the	 screen	 in	 Lynx,	bin	 and	counter.	Bin	 would	 record	 the	word	 randomly	
produced	and	counter	would	record	how	many	unique	words	had	been	generated.	I	could	have	simply	recorded	
every	random	word	assembled,	but	it	was	easy	enough	to	avoid	duplicates	by	checking	if	the	new	word	was	in	the	

3 One of the Marilyn Burns clues is “Which day of the week is a dollar word?” Kids shared their guesses, and
I checked them with my Logo procedure. We eventually tried every day of the week with no success
despite several students asserting that Wednesday is definitely a dollar word. It turns out that I eventually
found a bug in my own program. Since ASCII was used to convert text into numbers, Wednesday produces
a different value from wednesday. This discovery led the class to “fix” the value procedure to be case
sensitive – a serendipitous opportunity for debugging, conditionals, and arithmetic.

9	

textbox	already.	Overnight	uses	the	subprocedure,	generate,	which	uses	assemble	to	put	our	plan	into	action.	
Typing	overnight,	or	putting	its	instruction	on	a	button,	starts	the	monkeys	writing.	

	
to overnight

setcounter 0 cc bin, ct

generate

end

to generate

bin,

assemble

if not member? :newword bin

[print :newword setcounter counter + 1]

generate

end

3.3 Another	Unforeseen	Problem	

The	overnight	program	did	a	great	job	of	generating	thousands	of	X	letter	words	in	no	time,	but	which	ones	are	
actual	English	words	and	which	subset	of	those	words	are	dollar	words?	It	would	not	take	much	to	only	record	
dollar	words	generated	by	our	virtual	primates,	but	there	was	no	guarantee	that	those	words	would	also	be	English	
words.	We	could	increase	the	odds	that	English	words	would	be	generated	by	building	some	more	“intelligence”	
into	the	assemble	procedure	to	not	repeat	letters	that	do	not	appear	adjacent	in	English	(qq),	use	more	vowels,	or	
pick	from	more	phonemic	blends,	but	that	only	addresses	the	problem	with	nonsense	words	being	generated,	not	
knowing	if	those	results	were	also	dollar	words.	
At	this	point,	I	knew	that	we	had	a	problem.	There	was	no	good	way	to	check	the	words	our	program	created	to	

see	which	were	dollar	words.	ChatGPT	might	be	able	to	help,	but	the	current	version	does	not	like	large	piles	of	data	
being	entered	into	it,	at	least	in	the	consumer	version.	Lynx	does	not	have	access	to	a	dictionary.	Ironically,	Microsoft	
Word	will	at	least	underline	each	of	the	words	that	are	not	in	English,	but	that	leaves	us	to	find	a	needle	in	a	haystack.	
Those	English	words	could	then	be	checked	in	Logo	to	see	if	they	were	dollar	words,	but	there	must	be	a	better,	
more	efficient	way.	
I	had	an	inkling	that	this	was	a	job	for	Wolfram	Language,	but	I	did	not	know	enough	of	its	syntax	to	solve	the	

problem	myself.	Hopefully,	I	could	paste	the	list	of	words	my	program	generated	into	Wolfram	Language	and	it	
would	count	the	number	of	English	dollar	words	for	me.	

4 WOLFRAM	TO	THE	RESCUE	
Around	this	time,	I	received	a	3	AM	email	from	Stephen	Wolfram	unrelated	to	my	dollar	words	conundrum.	I	shared	
the	dollar	words	problem	with	Dr.	Wolfram,	and	he	was	delighted	by	it.	By	the	time	I	woke	up	a	few	hours	later,	he	
sent	me	a	link	to	a	Wolfram	Cloud	Notebook	in	which	he	used	Wolfram	Language	to	go	well	beyond	what	I	hoped	
to	achieve	 in	 just	a	 few	expressions.	Running	 this	 code	and	modifying	 it	 afforded	greater	understanding	of	 the	
miraculous	 computing	 language	 powering	Mathematica	 and	Wolfram	Alpha.	 	 The	 elegance	 of	 the	 language,	 its	
symbolic	nature	that	allows	any	expression	or	result	to	be	operated	upon,	its	speed,	and	large	language	model	of	
vast	 data	 sets	 about	 the	 known	 universe	 creates	 a	 computational	 environment	 bordering	 on	 wizardry.	 This	
awesome	power	is	also	available	for	free.	It	should	be	used	in	schools.	
Here	is	the	Wolfram	Language	code	for	computing	dollar	words	written	by	Stephen	Wolfram.	
	

Show	the	dollar	word	value	of	a	word,	in	this	case,	alfalfa	

10	

In[1]:=Total[LetterNumber[Characters["alfalfa"]]]

Out[1]= 39

Generate	50	words	randomly	and	show	the	ones	that	are	dollar	words	
In[3]:=Select[RandomWord[50],Total[LetterNumber[Characters[#]]]==100&]

Out[3]= harmonics,inadequacy

Generate	1,000	words	randomly	and	show	the	ones	that	are	dollar	words	
In[�]:= Select[RandomWord[1000],Total[LetterNumber[Characters[#]]]==100&]

Out[�]=benediction,embodiment,unbounded,septicemia,doubleheader,verbalize,services,
bewitching,saintly,discredited,discipline,irritate

Generate	all	of	the	dollar	words	in	the	English	language	and	display	them	in	alphabetical	order.	(This	took	a	
matter	of	seconds.	Due	to	space	limitations,	I	am	not	showing	the	output	here.	

In[�]:=Select[WordList[],Total[LetterNumber[Characters[#]]]==100&]

Out[�]=

Count	the	number	of	dollar	words	found/created	by	Wolfram	Language.	The	%	symbol	represents	the	
previous	output.	

In[�]:=Length[%]

Out[�]= 421

Calculate	the	percentage	of	dollar	words	based	on	the	all	words	in	the	English	language	
In[�]:=PercentForm[N[Length[%317]/Length[WordList[]]]]

Out[�]=1.075%

My	 entire	 dollar	words	 project	 could	 be	 expressed	 computationally	 in	 just	 a	 few	 lines	 of	 code	 using	Wolfram	
Language.	The	cloud	notebook	structure	of	the	interface	allows	me	to	share	my	“laboratory”	and	results	with	anyone	
to	verify	or	build	upon.	Such	computational	essays	hold	great	promise	as	a	new	form	of	microworld.	(Wolfram,	
2016a,	2017)	One	possible	exploration	would	be	to	compute	the	most	popular	letters	that	appear	in	dollar	words.	
Although	Wolfram	Language	could	perform	such	a	task,	likely	in	a	line	or	two	of	code,	the	results	could	be	used	to	
make	the	Logo	program	generating	dollar	words	overnight	“smarter.”	

Dr.	 Wolfram	 was	 so	 amused	 by	 the	 dollar	 words	 problem	 that	 he	 asked	 permission	 to	 feature	 it	 on	 his	
company’s	web	site.	Within	weeks,	Wolfram	Research,	created	a	plug-in	for	ChatGPT	4	that	allows	users	of	ChatGPT	
to	 employ	 the	 power	 of	Wolfram	 Language	 to	 ensure	 that	 computational	 intelligence	 is	 available	 to	 users,	 in	
addition	to	the	predictive	text	powers	of	the	generative	AI	model	already	in	existence.	(Wolfram,	2023a)		A	month	
later,	Wolfram	announced	a	way	to	use	their	tech	stack	to	build	your	own	plugins	to	increase	the	functionality	of	
ChatGPT.	 (Wolfram,	2023b)	The	 speed	at	which	 this	 functionality	 is	being	deployed	and	made	available	 to	 the	
general	public	is	quite	exciting	and	should	challenge	educators	to	explore	unforeseen	frontiers.	

	
“For	most	people,	nothing	is	more	natural	than	that	the	most	advanced	ideas	in	mathematics	should	be	
inaccessible	to	children.	From	the	perspective	I	took	from	Piaget,	we	would	expect	to	find	connections.	
So,	we	set	out	to	find	some.	But	finding	the	connections	did	not	simply	mean	inventing	a	new	kind	of	
clever,	 “motivating”	 pedagogy.	 It	meant	 a	 research	 agenda	 that	 included	 separating	what	was	most	

11	

powerful	in	the	idea	of	differential	from	the	accidents	of	inaccessible	formalisms.	The	goal	was	then	to	
connect	these	scientifically	fundamental	structures	with	psychologically	powerful	ones.”	(Papert,	1980)	

5 CONCLUSIONS	
This	series	of	activities	rushed	into	a	couple	hours	of	contact	time	with	students	could	and	should	be	extended	to	
allow	 for	 students	 to	 take	ownership	of	 the	project,	 test	hypotheses,	 “break	each	other’s	programs,”	 and	share	
results.	Even	 the	 tiny	microworld	of	dollar	words	demonstrates	 the	competence	of	 children,	 the	 importance	of	
computational	thinking,	and	the	need	for	rich	programming	experiences	if	students	are	to	be	prepared	to	navigate	
an	uncertain	future.	

The	Gossip,	Plural,	and	Dollar	Words	project	prompts	are	not	old.	They	are	timeless.	While	generative	AI	and	
environments	like	ChatGPT	are	embryonic,	hot,	and	novel,	they	are	not	automatically	superior	to	timeless	tools,	
techniques,	and	processes.	Imagine	if	a	group	of	students	could	turn	the	gossip	program	into	one	that	generated	
poetry	and	then	drew	illustrations	or	created	animations	based	on	that	random	poetry.	The	sky	is	the	limit.		

In	the	context	of	this	study,	Logo	was	an	excellent	environment	for	students	to	explore	powerful	ideas	from	a	
variety	of	ancient	and	emergent	domains	in	their	own	style	to	grasp	the	potential	of	generative	artificial	intelligence.	
Logo	has	always	prided	itself	on	featuring	a	low	threshold	and	high	ceiling.	In	this	case,	the	latest	technological	
craze	was	no	match	for	the	mind	of	an	elementary	school	student	who	armed	with	computational	programming	
tools	 can	 construct	 knowledge	 in	 exciting	 and	 myriad	 ways.	 A	 comprehensive	 amplification	 of	 the	 Logo	
community’s	legacy,	contributions,	and	insights	through	the	lens	of	2023	is	imperative.	

Paper	length	constraints	force	the	author	to	ignore	the	contributions	of	Papert	and	other	constructionists	in	
the	development	of	artificial	intelligence.	Logo	was	born	from	seminal	AI	research	(Papert,	1980)	and	its	creators	
offered	prescient	insights	decades	about	the	misguided	direction	of	the	research	that	produced	ChatGPT.	Logo	was	
based	on	LISP,	the	primary	language	of	artificial	intelligence	since	1959.	LISP	stands	for	list	processing,	the	very	
computing	concepts	developed	by	children	in	this	study.	While	there	are	lessons	for	educators	about	learning	to	be	
gained	from	the	AI	community,	there	is	much	that	educators	can	teach	the	AI	community	as	well.	

The	 convergence	 of	 list	 processing,	 linguistic	 tinkering,	 artificial	 intelligence	 fact-checking,	 probabilistic	
behavior,	 and	 symbolic	 programming	 creates	 a	 Mathland	 (Papert,	 1980)	 (Evenson,	 1997)	 that	 would	 excite	
Seymour	Papert.	Sophisticated	computational	tools	allow	children	and	one	of	the	world’s	leading	mathematicians	
to	“mess	about”	with	the	same	math	problem	as	naturally	as	they	might	engage	in	conversation,	joyously	and	with	
great	intensity.	There	are	undoubtedly	countless	such	learning	adventures	that	could	become	part	of	the	intellectual	
and	creative	diet	of	children.	

6 		IMPLICATIONS	
Constructionists	 should	 assert	 their	 roots	 in	AI,	 Piaget,	 and	progressive	 education	 to	 guide	practice	 and	 shape	
discussions	of	artificial	intelligence	in	education.	
Modern	versions	of	Logo,	with	low	threshold	and	high	ceilings	need	to	be	developed	for	learners	of	all	ages.	
The	constructionism	community	can	make	important	contributions	to	educational	progress	by	building	Logo-

like	environments	on	top	of	the	large	language	models	and	computational	stacks	in	Wolfram	Language.	The	Logo	
community	can	make	important	contributions	to	making	such	computational	power	more	accessible	with	simpler	
syntax.	
	

12	

REFERENCES		
Burns,	M.,	&	Weston,	M.	(1991).	The	$1.00	Word	Riddle	Book.	Math	Solutions.		
Evenson,	L.	(1997).	SUNDAY	INTERVIEW	--	Seymour	Papert	/	Computers	In	the	Lives	of	Our	Children	/	An	MIT	mathematician	and	philosopher	is	

exploring	 how	 technology	 can	 educate	 the	 next	 generation	 --	 and	 their	 parents.	 San	 Francisco	 Chronicle.	
https://www.sfgate.com/news/article/SUNDAY-INTERVIEW-Seymour-Papert-Computers-In-2856685.php	

Goldenberg,	E.	P.,	&	Feurzeig,	W.	(1987).	Exploring	language	with	Logo.	Mit	Press.		
Papert,	S.	(1980).	Mindstorms:	children,	computers,	and	powerful	ideas.	Basic	Books.		
Papert,	S.	(1991).	Perestroika	and	Epistemological	Politics.	In	I.	Harel	&	S.	Papert	(Eds.),	Constructionism	(pp.	13-28).	Ablex	Publishing	Corporation.		
Papert,	S.	(2000).	Papert	talks	about	middle	school	mathematics	education.	https://vimeo.com/101596910	
Papert,	 S.	 (2006).	 Seymour	 Papert	 Keynote	 Lecture	 at	 ICMI	 17	 Conference	 in	 Hanoi,	 Viet	 Nam.	 http://dailypapert.com/wp-

content/uploads/2012/05/Seymour-Vietnam-Talk-2006.pdf	
Resnick,	M.	(1993).	Logo	Overnight.		https://el.media.mit.edu/logo-foundation/resources/papers/pdf/logo_overnight.pdf	
Wolfram,	 S.	 (2016a).	 How	 to	 Teach	 Computational	 Thinking.	 https://writings.stephenwolfram.com/2016/09/how-to-teach-computational-

thinking/		
Wolfram,	S.	(2016b).	How	to	teach	computational	thinking.	Stephen	Wolfram	Blog.		
Wolfram,	S.	(2017).	What	Is	a	Computational	Essay?		https://writings.stephenwolfram.com/2017/11/what-is-a-computational-essay/	
Wolfram,	 S.	 (2023a).	 ChatGPT	 Gets	 Its	 “Wolfram	 Superpowers”!	 https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-

superpowers/		
Wolfram,	 S.	 (2023b).	 Instant	 Plugins	 for	 ChatGPT:	 Introducing	 the	 Wolfram	 ChatGPT	 Plugin	 Kit.	

https://writings.stephenwolfram.com/2023/04/instant-plugins-for-chatgpt-introducing-the-wolfram-chatgpt-plugin-kit/		

	

