Electrifying Children's Mathematics

Gary S. Stager, Ph.d.
constructingmodernknowledge.com/maths
professorgarystager.com
@garystager
August 2023

Workshop Handout

Additional resources at

inventtolearn.com/questions

Reasons to Program Computers

- Agency over an increasingly complex \& technologically sophisticated world
- Make things
- Make things work
- Express yourself
- Develop habits of mind
- Solve problems
-Concretize abstractions
-Contextualize mathematics
- Mirrors the writing process and various design cycles
- You can do it by yourself or with others
- "Hard fun"
- Jobs / careers

The benefits of computation

- Describes phenomena through formal, numerical, representations
- May produce action
- Makes project-based learning possible in math
- Hard fun
- Models thinking
- "You can't think about thinking without thinking about thinking about something." - Seymour Papert
- Opportunities for debugging
- "The question to ask about the program is not whether it is right or wrong, but if it is fixable." - Seymour Papert
- Makes interactivity possible
- Bestows agency on the learner
- Amplifies our potential by the computer working for us instead of us working for the computer
- Sustains democracy

What is Logo?

Resources, links, books, \& articles

Languages for Learning

Language
Turtle Art
Scratch
Snap!
Lynx
microBlocks
Microsoft MakeCode
Turtlestitch
Beetleblocks
Wolfram Language

URL
turtleart.org
scratch.mit.edu
snap.berkeley.edu
lynxcoding.club
microblocks.fun
makecode.com
turtlestitch.org
beetleblocks.com
mkfutures.com/wolfram

BBC micro:bit Challenges

Micro:bit and MakeCode Getting Started Prompts

1) Program the micro:bit to display a new image or scrolling text
2) Program the micro:bit to display one image when the A button is pressed and a different image when the B button is pressed.
3) Program the micro:bit to display the temperature. Test your thermometer.

Super duper gifted and talented extra

 credit: Display the temperature in Fahrenheit4) Program the micro:bit to display a smiley face when the temperature is above a certain value and sad face when it gets cold.
5) Program one micro:bit to "pass a message" to another micro:bit, using the radio features, when a user presses a button.

You can't handle this challenge!

Program two more micro:bits to pass messages between each other.
6) Program one micro:bit to cause another micro:bit to produce some action, such as light an LED, drive a servo, or run a program.
7) Make a micro:bit stopwatch. (tricky)

1-hour micro:bit Workshop Challenge

1. Program the micro:bit to behave like a die rolled by a player.
2. Instead of displaying a number, display a die face.
3. Add some effects to make it look (or sound) like rolling a die before it settles on a "side"
4. Roll your die and have it send the value to appear on a friend's micro:bit.
5. Make the die rolled in your hand make something else happen on a friend's die, like flash an LED x times.
6. Use your micro:bit die with Scratch to control an animation or interact with a board game you program.

Read more about the thinking behind the design of this activity at https:// inventtolearn.com/1-hour-microbit-workshop-challenges/

The Invent to Learn Guide to the micro:bit

Getting Started with micro:bit Radio Communication
 By Gary S. Stager, Ph.D.

Although the block-based MakeCode environment is quite intuitive, the radio functionality of the micro:bit requires a tiny bit of instruction. You can use the micro:bit's radio functionality to pass messages, as a remote control, or even to model social behavior between robots. Here is a concise guide to get you started.

Imagine the micro:bit as a walkie-talkie

If you talk into a two-way radio, like a walkie-talkie, any other radio within range and using the same frequency or channel should receive your message. Friends should also be able to speak to you. It does not matter how many walkie-talkies are involved. Each radio on the same frequency can participate in the conversation. The micro:bit works in a similar fashion.

Voice is but one of the forms of data a walkie-talkie can share. Some allow users to exchange morse code. The micro:bit doesn't transmit voice, but it does have the ability to share text (strings) and numbers between a seemingly infinite number of micro:bits using the same channel within a limited physical range.

1. Each micro:bit in your "network" needs to be set to the same channel. If you are exchanging private messages, keep the channel extra secret quiet. To set the channel, each micro:bit being used needs to have an on start block that sets the same channel from 0-255.

2. Each micro:bit needs code to broadcast messages/data to other listening micro:bits and code for reacting once it "hears" a new message. In this case, when a user presses the A button on the micro:bit, a message of "Good Morning!" is broadcast. If no other micro:bit is listening, that message falls on deaf ears.

It is critical to decide if you are sending \& receiving numbers or strings (text). You must the choose the correct send and receive blocks according to the data type.
3. If more than one of the micro:bits in your community contain blocks like the tirst two and the next one, you will have created a simple text-based walkie-talkie system.

Use an on radio received block and drag the receivedString variable into the input of the show string block. This will replace a literal message with the variable one being broadcast by another micro:bit. If dragging the variable into the container is too difficult, the variable may also be found in the blocks under the radio menu.

That block has the job of listening until a new message is broadcast (within) range and then doing something. In this case, it displays the message for the owner of the receiving micro:bit to read, just like passing a note or sending a text message.

You can of course program other buttons or micro:bit movements to send other messages.
All of the micro:bits participating in this chat need to have the same three blocks, or reasonable facsimiles downloaded to them.

You can also send numbers!

You might send a numerical value between micro:bits when you wish to trigger an event without a textual (string) message being received and displayed. For example, what if you want to tell another micro:bit to start an animation, flash an LED X times, or tell your robot to turn left or right? Sending a number might just do the trick.

1. Set the channel as you did in the previous example.
2. Use an radio received receivednumber block to build a simple animation that will repeat the number of times one micro:bit broadcasts to others.

Strings and numbers may be shared via radio in the same program.
Remember that every micro:bit in your network needs to have similar send and receive programs downloaded to the communicating micro:bits! Any program changes need to be downloaded to all of the micro:bits.

Challenges:

1. Make an LED connected to another micro:bit flash a certain number of times.
2. Shake one micro:bit to display a random dice face on a second micro:bit
3. Tilt one micro:bit to control the motions of a machine containing another micro:bit.
4. Invent a way for micro:bits to send messages across greater distance than their normal range. Clue: Think about how telegraphy facilitated Western expansion in the United States.

New \& Improved Graph a Mystery Picture \#1 - lynxcoding.club

Secret Picture 1 Coordinates	Procedures	Secret Picture 2 Challenge
	to mypicture	Can you write a new
[133$]$	pu	procedure to connect these
[212]	setpos [1 3]	points?
[312]	pd	
$\left[\begin{array}{lll}2 & 1\end{array}\right]$	setpos [1 3] dot	Be sure that your procedure
$\left[\begin{array}{lll}3 & 0\end{array}\right]$	setpos [2 2] dot	has a new name!
$\left[\begin{array}{lll}2 & 0\end{array}\right]$	setpos [3 2] dot	
[$2-4$ - $]$	setpos [2 1] dot	[-6-9]
$\left[\begin{array}{lll}1 & -6\end{array}\right]$	setpos [3 0] dot	[-6 -8]
$\left[\begin{array}{lll}-1 & -7\end{array}\right]$	$\left.\begin{array}{l}\text { setpos [2 } 20\end{array}\right]$ dot	[-7-7]
$\left[\begin{array}{lll}0 & -8\end{array}\right]$	setpos $\left[\begin{array}{ll}2 & -4\end{array}\right]$ dot setpos $[1-6] ~ d o t ~$	[-8 -5]
[2 -9] $]$	setpos $\left[\begin{array}{ll}-1 & -7\end{array}\right]$ dot	$\left[\begin{array}{lll}-8 & -2\end{array}\right]$
$\left[\begin{array}{lll}-1 & -9\end{array}\right]$	setpos [0-8] dot	$\left[\begin{array}{ll}-6 & 0\end{array}\right]$
$\left[\begin{array}{lll}-1 & -8\end{array}\right]$	setpos [$2-9]$ dot	$\left[\begin{array}{lll}-7 & 3\end{array}\right]$
$\left[\begin{array}{lll}-2 & -7\end{array}\right]$	setpos $\left[\begin{array}{ll}-1 & -9\end{array}\right]$ dot	[-5 4]
$\left[\begin{array}{lll}-3 & -7\end{array}\right]$	setpos $\left[\begin{array}{ll}-1 & -8\end{array}\right]$ dot	$\left[\begin{array}{lll}-4 & 3\end{array}\right]$
[$\left.\begin{array}{lll}-4 & -8\end{array}\right]$	setpos $\left[\begin{array}{ll}-2 & -7\end{array}\right]$ dot	$\left[\begin{array}{lll}-5 & 3\end{array}\right]$
$\left[\begin{array}{lll}-2 & -9\end{array}\right]$	setpos [$-3-7]$ dot	[-5 2]
[-5 -9]	setpos [$-4-8]$ dot	$\left[\begin{array}{ll}-4 & 0\end{array}\right]$
$\left[\begin{array}{lll}-5 & -8\end{array}\right]$	setpos [-2 -9] dot	$\left[\begin{array}{lll}-3 & 3\end{array}\right]$
$\left[\begin{array}{ccc}-4 & -7\end{array}\right]$	setpos [$-5-9]$ dot	[-1 4]
[$-7-5$]	setpos [$-5-8]$ dot	[03]
$\left[\begin{array}{lll}-8 & -3\end{array}\right]$	setpos [$-4-7]$ dot	$\left[\begin{array}{lll}-1 & 3\end{array}\right]$
$\left[\begin{array}{lll}-8 & 0\end{array}\right]$	setpos [$-7-5]$ dot	$\left[\begin{array}{lll}-2 & 2\end{array}\right]$
$\left[\begin{array}{ccc}-6 & -1\end{array}\right]$	setpos [$\left.\begin{array}{l}-8 \\ \hline\end{array}\right]$ dot	$\left[\begin{array}{lll}-2 & 0\end{array}\right]$
$\left[\begin{array}{lll}-3 & -1\end{array}\right]$	setpos [-800$]$ dot	$\left[\begin{array}{lll}-1 & 0\end{array}\right]$
$\left[\begin{array}{lll}-2 & 0\end{array}\right]$	setpos [$-6-1]$ dot	[0-1]
$\left[\begin{array}{lll}-2 & 2\end{array}\right]$	setpos [$-3-1]$ dot	[0-2]
$\left[\begin{array}{lll}-1 & 3\end{array}\right]$	setpos [-2 0] dot	[3-2]
$\left[\begin{array}{lll}1 & 3\end{array}\right]$	setpos [-2 2 $]$ dot	[3-5]
$\left[\begin{array}{lll}1 & 4\end{array}\right]$	setpos $\left[\begin{array}{ll}-1 & 3\end{array}\right]$ dot setpos	$\left[\begin{array}{lll}-2 & -8]\end{array}\right.$
$\left[\begin{array}{lll}0 & 3\end{array}\right]$	setpos [1 3] dot setpos [1 4] dot	
$\left[\begin{array}{lll}-1 & 4\end{array}\right]$	setpos [0 3] dot	$[-6-9]$
$\left[\begin{array}{lll}-1 & 3\end{array}\right]$	setpos [-1 4] dot	Here's a super version of
These coordinate points will be used in a procedure to get the	setpos [-1 3] dot end	dot for even cooler pictures! What does it do differently?
turtle to plot them for us.	to dot setpensize 3 pd fd 0 setpensize 1 end	```to dot setpensize 3 setc "red pd fd 0 setpensize 1 setc "black end```

Mathematician's Mind-boggling Challenge

How can you make the turtle draw a larger version of your connect-the-dots graph?

Getting the Computer to Work for You

Lots of what kids experience while programming is a form of working for the computer. You formalize thinking and communicate precise directions to the computer. Once you develop a bit of programming fluency, the computer can work for you. Let's use the Lynx dialect of Logo for this activity. http://lynxcoding.club

In this context, the most obvious shift is in reducing the amount of typing a user must do to get a computer to graph a nonspecific number of coordinate points.

The First Simplification

The mypicture procedure has an obvious and immediate need to simplification. Anytime you see a repetitive pattern or set of similar instructions used multiple times, it may be a good time to consider writing a helper procedure to do more of the work. Setpos [$x \quad y$] dot is a great example. Let's create a go procedure that takes a position (expressed as a list of two numbers representing x and y) as input.

```
to go :point
setpos :point
dot
end
```

Now, your mypicture procedure can look like this.

```
to mypicture
pu
setpos [1 3]
pd
go [1 3]
go [l2 2]
go [3 2]
.
.
.
end
```


That's Still Too Much Work!

Using list processing, we can eat through a list of coordinate points and graph them in sequence, without even knowing how many points there are. The following recursive procedure does this.
to grapher :list
if empty? :list [stop]
go first :list
grapher bf :list
end

Grapher takes a list as input, goes to the first set of coordinates in the list, and then runs the same procedure again, but this time passes everything but the first item in the list (a pair of coordinates) back to the grapher procedure. The points are a list of lists.

The if empty? :list [stop] line is called a stop rule. The stop rule tells the computer to stop the procedure as soon as the list of inputs is empty. A programming line such as this is used in countless contexts. Test it out in the command center.

```
Grapher [[0 0] [0 50] [50 50] [50 0]]
```

or
Grapher [[0 0 0 [0 50] [50 50] [50 0][35 35]]

The stop rule allows you to use as many or few elements in the list input to the procedure.

My Picture is Too Small!

Now that we've written a procedure to eat through a list of any size and graph the coordinates found in the list, we need a way to change the scale of the drawing. The first obvious improvement to the grapher procedure is to add an input for scale.

```
to supergrapher :list :scale
if empty? :list [stop]
.
•
end
```

So far, so good. Our procedure has two inputs and a stop rule, but where's the beef?
We need to take apart our list of coordinates, multiply each element by the scale, and then put the coordinates back together so the turtle may be sent to that new place on the screen.

```
to supergrapher :list :scale
if empty? :list [stop]
setpos list (first first :list) * :scale (last first :list) * :scale
dot
supergrapher bf :list :scale
end
```

If you don't understand what's happening in the setpos line of this procedure, try the following in the command center.

```
show first first [[l10 20] [30 40] [50 60]]
show (first first [[10 20] [30 40] [50 60]]) *5
show list (first first [[10 20] [30 40] [50 60]]) * 5 (last first
[[10 20] [30 40] [50 60]]) * 5
show (list (first first [[10 20] [30 40] [50 60]]) * 5 (last first
[[10 20] [30 40] [50 60]]) * 5)
```

What happened?
list's job is to put two items together and report them as a list, like sentence, if you have more than two elements, put the entire expression in parentheses () in order to create a list of many items.

Now graph like crazy with the new supergrapher!

```
Supergrapher [[[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [[-6 0] [-7 3]
[-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 2]
[-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -9]] 5
Supergrapher [[[-6 -9] [-6 -8] [-7 -7] [ -8 -5] [-8 -2] [[-6 0] [-7 3]
[-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 2]
[-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -9]] -
10
```

If you just want to play with the newly discovered chicken, you could write a procedure like this one.

```
to superchicken :scale
supergrapher [[ 1 3 ] [ 2 2 ] [ 3 2 ] [ 2 1 ] [ 3 0 ] [ 2 0 ] [ 2 -4
] [ 1 -6 ] [ -1 -7 ] [ [ 0 -8 ] [ 2 -9 ] [ -1 -9 ] [ -1 -8 ] [ -2 -7 ]
[ -3 -7 ] [ -4 -8 ] [ -2 -9 ] [ -5 -9 ] [ -5 -8 ] [ -4 -7 ] [ -7 -5
] [ -8 -3 ] [ -8 0 ] [ -6 -1 ] [ -3 -1 ] [ -2 0 ] [ -2 2 ] [ -1 3 ]
[ 1 3 ] [ 1 4 ] [ 0 3 ] [ -1 4 ] [ -1 3 ]] :scale
end
```


Try

cg superchicken 5
cg superchicken 2
cg superchicken 20

You may find that specifying the scale after a long list aesthetically displeasing. That's an easypeasy fix. Just reverse the inputs in the procedure and recursive call.

```
to supergrapher :scale :list
if empty? :list [stop]
setpos list (first first :list) * :scale (last first :list) * :scale
dot
supergrapher :scale bf :list
end
```

Now try this new and improved version!

```
Supergrapher -10 [[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [-6 0] [-7
3] [-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4 4] [0 3] [-1 3] [-2
2] [-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -
9]]
```

If you want to simplify this process for other users, you can create a visual slider called something like, magnification, on the screen (if using Lynx) and then create a button set to run a procedure, such as the following.

```
to sc2
supergrapher coordinates magnification
```

end

The coordinates procedure is a reporter that just outputs the list of coordinates you're using as an input to other procedures, over and over again.

In this case, the coordinates are the points used to create the original tiny chicken.

```
to coordinates output [[ll 3] [2 2 2] [3 2] [l2 1] [3 0] [2 0] [2 -4]
```



```
end
```

Magnification is the name of a slider created by:

- Clicking the + sign in the Lynx tool palette

- Name the slider, set its range, and starting value.

- Next, create a new button from the same tool palette.
- Label the button draw
- Choose the sc2 procedure to run when the button is clicked

Change the value of the slider by clicking and dragging and then click on the draw button to see what happens. Try this several times.

List Processing is Universal!

The sort of code found in grapher or supergrapher are used in countless contexts! Understand it and you can get the computer to work for you in innumerable ways. Here's an example of manipulating computer music.

Note takes two inputs, pitch \& duration.

Let's say that Note 604 plays a C for a count of 4
Note 624 plays a D for 4 counts
Note 644 plays an E for 4 counts
If we had a play procedure that could take a list of notes and durations, we could manipulate the music just like a composer!

```
Play [[60 4] [62 4] [64 4]]
to play :music
If empty? :music [stop]
Note first first :music last first :music
play bf :music
end
```

Another version of this procedure could speed up or slow down the music, just like we did in supergrapher.

```
to play :music :tempo
If empty? :music [stop]
note (first first :music) (:tempo * (last first :music))
play bf :music :tempo
end
Play [[60 4] [62 4] [64 4]] 1
Plays at normal tempo
Play [[60 4] [62 4] [64 4]] 2
Plays the same notes twice as slow
Play [[60 4] [62 4] [64 4]]. }
Plays the same notes twice as fast
```

Can you add an input to play for transposition? Its job is to change the pitch by a numerical value (+ or -).

Can you write a procedure that will play a list of notes and durations backwards, or in musical parlance, retrograde?

If you get tired of typing the list of values over and over again, put the computer to work. Create a procedure like the following.

```
to music
output [[60 4] [62 4] [64 4]]
end
```

Then run the following instruction:
play music . 5
or
to points
output [$\left[\begin{array}{ll}-6 & -9\end{array}\right]\left[\begin{array}{ll}-6 & -8\end{array}\right]\left[\begin{array}{ll}-7 & -7\end{array}\right]\left[\begin{array}{ll}-8 & -5\end{array}\right]\left[\begin{array}{ll}-8 & -2\end{array}\right]\left[\begin{array}{lll}-6 & 0\end{array}\right]\left[\begin{array}{ll}-7 & 3\end{array}\right]\left[\begin{array}{ll}-5 & 4\end{array}\right]$ $\left[\begin{array}{ll}-4 & 3\end{array}\right]\left[\begin{array}{ll}-5 & 3\end{array}\right]\left[\begin{array}{ll}-5 & 2\end{array}\right]\left[\begin{array}{ll}-4 & 0\end{array}\right]\left[\begin{array}{ll}-3 & 3\end{array}\right]\left[\begin{array}{ll}-1 & 4\end{array}\right]\left[\begin{array}{lll}0 & 3\end{array}\right]\left[\begin{array}{ll}-1 & 3\end{array}\right]\left[\begin{array}{ll}-2 & 2]\end{array}\left[\begin{array}{ll}-2 & 0\end{array}\right]\right.$ $\left[\begin{array}{ll}-1 & 0\end{array}\right][0-1][0-2][3-2]\left[\begin{array}{ll}3 & -5\end{array}\right]\left[\begin{array}{ll}-2 & -8\end{array}\right]\left[\begin{array}{ll}-2 & -9\end{array}\right]\left[\begin{array}{ll}-6 & -9]\end{array}\right]$ end

Then run the following instruction:
supergrapher 10 points or supergrapher points 10, depending on which order you decided to use the inputs in your procedure.

The Big Idea

Versions of the grapher/supergrapher procedure are used in music composition, encryption, codes \& cryptography, art, and data manipulation of all kinds. If you understand these fundamental list processing techniques of "eating" and "smushing," you can solve a world of problems and put the turtle to work for you.

To use Turtle Art, go to http://playfulinvention.com/webturtleart

For Turtle Art resources, go to constructingmodernknowledge.com/new-turtle-art-cards/

Making Polygons

Super Dooper Really Really Really Hard Challenge

Name	\# of sides	amount of turn
Triangle	3	
Square	4	90
Pentagon	5	
	6	
	7	
Octagon	8	
	9	
	10	
	11	

Change the number of sides and and amount of the turn to create the polygons.

Turtle Art - Playing with Arithmetic

Problem 1

Create the following program:

Can you predict what it will do before you run it?
What does it do?
What happens if you change the number 1 to another number?
What happens if you change the \mathbf{X} to +, - or / ?

Problem 2

Answer to other side

Create the following program:

Can you predict what it will do before you run this program?
How does it work?
What happens if you replace the 1 with a larger number, say 10 ?
When you increase the pen color by 1 , does the color get lighter or darker?
What happens if you place a repeat block at the top of the program?

Problem 3

Here's a crazy idea!
What do you predict will happen if you combine program 1 and program 2? Snap them together and fine out!

Thinking About cheating at Tricky Pattern Blocks in Turtle Art

Goal

Write a Turtle Art procedure to draw each of the shapes in a set of pattern blocks! In other words, teach the turtle to draw all of the shapes in a set of pattern blocks.

Suggested Strategies

Think about the shape you want the turtle to draw
How many sides are there? Is there a mirror image?

Look for patterns
Are any of the turns/corners ones you have seen before?
Are all of the sides equal? Are some longer than others? If so, by how much?
Try numbers you know
Start with simple numbers for right or left turns. Numbers ending in 0 or 5 often do the trick (those are multiples of 5 or 10). For example, $90,120,30,150,60,45$ are some of the numbers we have used to turn the turtle.

Hide the turtle to see if the shape is drawn perfectly
You should not see overlapping lines or gaps in the shape.

I really like when the turtle returns to where it started drawing a shape and pointed in its original direction. That's why luse FORWARD RIGHT or FORWARD LEFT instead of RIGHT FORWARD or LEFT FORWARD.

Here are two of the shapes we figured out together. Do you see any patterns?

Challenge

Figure out a way to use the shapes you created to make patterns on the computer screen with your new procedures. You might even think of this as creating art software for little kids to play with.

Turtle Art Quilt Project

An adventure in creativity

Goal

Design one or more quilt patches that may be combined with classmates or used to create your own screen quilts in Turtle Art.

Instructions

Start with these blocks. Everyone needs to use these instructions as a common starting place.

Each quilt project needs these fundamental building blocks

Design a procedure named patch1 to draw a design completely within the frame and be sure that the turtle returns to where it begins with the same orientation as when the procedure started. The frame is a square with sides of 150 turtle steps.

Extra credit

If you are satisfied with patch1, design procedures for new and different quilt patches. Name them patch2, patch3, etc...

Each patch needs to begin with frame.

Extreme Arts and Crafts Challenge

Create a quilt procedure that assembles one or more of your patches into a beautiful quilt design. You are of course free to repeat the use of a patch or use a variety of them.

Note: color -9999 is black in Turtle Art

Remember

- Save often!
- Each patch needs to begin with frame.

The 3n Problem

Gary S. Stager

Scenario

You and your noted mathematician colleagues convene in Geneva to present brilliant theories pertaining to one of the world's great mysteries, the elusive 3n Problem.

BACKGROUND

The 3 N problem offers a fantastic world of exploration for students of all ages. The problem is known by several other names, including: Ulam's problem, the Hailstone problem, the Syracuse problem, Kakutani's problem, Hasse's algorithm, Thwaite's Conjecture 3X+1 Mapping and the Collatz problem.

The 3 N problem has a simple set of rules. Put a positive integer (1, 2, 3, etc...) in a "machine." If the number is even, cut in half - if it is odd, multiply it by 3 and add 1 . Then put the resulting value back through the machine. For example, 5 becomes 16, 16 becomes 8 , becomes 4,4 becomes 2 , 2 becomes 1 , and 1 becomes 4 . Mathematicians have observed that any number placed into the machine will eventually be reduced to a repeating pattern of 4...2...1...

This observation has yet to be proven since only a few billion integers have been tested. The $4 \ldots . . .1 \ldots$ pattern therefore remains a conjecture.

The computer will serve as your lab assistant - smart enough to work hard without sleep, food or pay, but not so smart that it does the thinking for you.

Using the computer

1. Point your browser to http://constructingmodernknowledge.com/3n
a. You may edit the project or look at the code here.
2. Click the Test button
3. Enter a positive integer > 0 and click OK
4. As soon as you see the pattern $4 \ldots 2 \ldots 1 \ldots$ appear in the data window, click the STOPALL button
5. Click the Howmany button and the computer will count many "generations" that number took to reach the repeating pattern.
6. The count will appear in the generations window.
7. Think about the results. Record your data and test another number.
8. Repeat steps 1-7

Your challenge

- Work with your teammates to find numbers that take a "long time" to get to the repeating pattern of $4 \ldots .2 \ldots 1 \ldots$
- How did you go discover a number that took a "long time?"
- What is a long time?
- Use any tools at your disposal to learn more about the problem and to record or analyze your data.
- Share your hypotheses with the assembled "conference delegates."
- Defend your hypotheses.
- Disprove the hypotheses of other delegates.

EXTRA TOOLS TO MAKE YOU SAY, "hMmM..."

- Click on the arrow taking you to the web page, http://www.stager.org/3n/3ntools.html
- The first screen is similar to the $3 n$ tools you've been using
- Click on the Overnight button to ask your virtual lab assistant to keep track of numbers that take more than a specific number of generations. You may adjust the generations slider based on what you determine to be a "long time" and click on the Experiment button to specify the number you wish to start with. This tool will then try every number after the value you specify until you stop it.
- Clicking on the Graph button will take you to a set of tools designed to graph the number of generations taken by each number in a series beginning with the number you specify. Does the graph tell a story?

Debriefing questions

- What did you learn from this experience?
-What did you observe about the learning style(s) of your collaborators?
- Which subject(s) does this project address?
- What might a student learn from this project?
- For age/grade is this project best suited?
- What would a student have to know before successfully engaging in this project?

The tools used in this activity were created using Lynx, a wonderful environment for multimedia authoring, modeling, robotics, animation and exploring powerful ideas. With Lynx, you could customize my tools or build your own. Go to lynxcoding. club for more information.
© 2003 Gary S. Stager

Getting Started with Wolfram Alpha and Wolfram Language

Wolfram Alpha

http://wolframalpha.com
In Wolfram Alpha, click on Open code \leftrightarrows to open the equation in Wolfram Language
Create a new notebook in Wolfram [Language] Programming Lab
http://lab.open.wolframcloud.com/app/
Fast Introduction to Wolfram Language for Math Students
http://www.wolfram.com/language/fast-introduction-for-math-students

Fast Introduction to Wolfram Language for Math Students
http://www.wolfram.com/language/fast-introduction-for-math-students
Fast Introduction to Wolfram Language for Programmers
http://www.wolfram.com/language/fast-introduction-for-programmers
An Elementary Introduction to Wolfram Language [book]
http://www.wolfram.com/language/elementary-introduction/2nd-ed/ [ebook] http://amzn.to/2BDhf4B [softcover]

Going from Wolfram Alpha to Wolfram Language - Launching Wolfram/Alpha Open Code
http://blog.stephenwolfram.com/2016/12/launching-wolframalpha-open-code/

Important Articles by Stephen Wolfram

What is a Computational Essay?
http://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay/
How to Teach Computational Thinking
http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
Wolfram Development Platform [for deploying your Wolfram Language apps]
https://develop.open.wolframcloud.com/app/
Computational Thinking Project Ideas from Wolfram
http://www.computationinitiative.org/resources/teaching/
Classic Steven Levy Wired Profile of Stephen Wolfram
https://www.wired.com/2002/06/wolfram/

Videos

Conrad Wolfram's TED Talk
https://www.youtube.com/watch?v=600VlfAUPIg
Stephen Wolfram's Intro to Wolfram Language
https://www.youtube.com/watch?v=_P9HqHVPeik
Making Programming Accessible to Everyone with Wolfram Language
https://www.youtube.com/watch?v=ALuQzgDvr2g
Stephen Wolfram in Conversation with Howard Gardner at the Harvard Askwith Forum 11/6/2017
https://youtu.be/sJronwbyFeM
Stephen Wolfram Computational Universe in the MIT Artificial General Intelligence class lecture (March 2018) https://youtu.be/P7kX7BuHSFI

THE MATH PROCESS

APPLYING THE CBM SOLUTION HELIX OF MATH

Think through the scope and details of the problem; define manageable questions to tackle.

DEFIN:

Why Use Math?

Because it's the most powerful way to get answers to a wide range of real-world questions. Several factors contribute to math's power. One is its ability to describe a large number of apparently different situations in precise and standardized ways. Another is because these descriptions come with highly effective methods for working out, or "computing," answers. Math may look cryptic but it's by this "abstraction" from the problem at hand that the same methods can be reused and refined on so many different problems. Math also scales well. Whizz around the CBM Solution Helix in a few seconds for everyday problems like "How fast do I need to go?", or apply it over years at the cutting edge of research to solve problems like "How can I make a car go 1000 mph ?"

What Is Computation?

Clearly defined procedures backed up by proven logic for transforming math questions into math answers. For hundreds of years, computation was limited by humans' ability to perform it. Now computers have mechanized computation beyond previous imagination, scaling up to billions of calculations per second, powering math into transforming our societies.

Computer-Based Math (CBM)...
...is building a completely new math curriculum with computer-based computation at its heart, while campaigning at all levels to redefine math education away from historical hand-calculating techniques and toward real-life problem-solving situations that drive high-concept math understanding and experience.

More computational possibilities to explore

MakeCode Arcade

Design, program, and play your own video games on the screen or handheld device.

1. Go to arcade.makecode.com/
2. Try one of the tutorials
3. Embellish or improve the game
4. Play it on the screen or download it to a handheld game system like the Meowbit.

Go to https://inventtolearn.com/program-your-own-gameboy/ for hardware and software resources

MicroBlocks

Microblocks is an ingenious live-coding block-based programming environment you should experience.

1. Go to microblocks.fun
2. Follow the Getting Started instructions
3. MicroBlocks looks a lot like MakeCode. How is it different?
4. What are some advantages of livecoding?

You may also explore programming the micro:bit in Scratch. Go to scratch.mit.edu/ microbit to get started.

For the ultimate learning adventure, attend CONSTRUCTING MODERN KNOWLEDGE July 11-14, 2023 constructingmodernknowledge.com

Turtle Art

Block-based Logo dialect focused on communicating geometric and computational ideas to the computer in pursuit of creating beautiful art.

1. Turtle Art software playfulinvention.com/webturtleart
2. Visit the Turtle Art resources section of inventtolearn.com/turtleart for links to software, activity cards, and teaching ideas.

Wolfram Language

May just be the future of computing, already powering most serious scientific and mathematical research. Infinite and untapped potential. Wolfram Language powers Wolfram Alpha \& Mathematica.

1. Go to inventtolearn.com/wolfram for getting started tutorials, resources, videos, and links to the software.

Continue learning long after the workshop with resources found at inventtolearn.com/questions.
Email gary@stager.org or sylvia@inventtolearn.com to schedule school-based professional development opportunities.

A Math Game Only a Mother Could Love

© 2012 Gary S. Stager, Ph.D.

Version 1

Create two textboxes on the Lynx page. One should be named, Correct and the other should be named Incorrect.
to number1
output random 11
end
Number 1 will report a random number between 0 and 10 . If you want a number from 1-10, you say output $1+$ random 10
to number2
output random 11
end
number1 or number 2 may be different in case you want to practice one times table or another.

If you wish to practice a particular "table" change the number1 procedure to output 5, if you want to practice your 5 times tables.

Try this line a few times and see what it does. Show (list number1 "* number2)

It should make a multiplication problem

```
to quiz
askquestion (list number1 "* number2)
end
to askquestion :problem
question :problem
ifelse answer = run :problem [setcorrect correct + 1]
[setincorrect incorrect + 1]
end
```

Can you add an announcement with ANNOUNCE, sound-effect or animation when the user answers correctly or incorrectly?

```
to game
setup
repeat 10 [quiz]
end
to setup
setcorrect 0
setincorrect 0
end
```

Can you figure out a way to randomly select the arithmetic operation [+ - * /] ? Hint: PICK may be useful here.

Can you figure out a way to display a score (perhaps based on percentage of correct answers) on the page? Hint: You'll need a score textbox.

GAME is the superprocedure that makes everything work. You may wish to make a button to run the GAME instruction.

Version 2 - Timed game

Change the following procedures

```
to game
setup
resett
repeat 10 [quiz]
end
```

resett resets the program's clock to 0 .
to quiz
if timer > 600 [Announce [Time's up!] stopall]
askquestion (list number1 "* number2)
quiz
end
timer counts in tenths of a second. So, $10=1$ second. $600=1$ minute. You may use any number you wish in the quiz procedure.

The quiz procedure now runs over and over again until the time is up and then stopall stops all processes.

Introduction to Lynx Words, Lists and Ciphers Gary Stager, Ph.D.

Words in Lynx begin with quotation marks as in:

```
show "Gary
```

Lynx lists are a collection of words or other lists, such as:

```
show [lemon grape [apple pie] strawberry]
```

The list above has 4 elements, 3 words and 1 list. A good deal of computer programming involves taking things apart and putting things together. In this activity, we will take things apart.

1) ASCII is a reporter. Try typing the following in the command center:
```
show ascii "a
show ascii "e
show ascii "z
```

What does ASCII do? \qquad
2) CHAR is another reporter. Try the following in the command center:

```
show char 97
show char 98
show char 111
```

What does CHAR do? \qquad
If ascii "a $=97$, how can we change that number to equal 1 ?

3) Try the following in the command center:
show first "apple
show last "apple

What does the reporter, first, do?
What does the reporter, last, do?
4) Predict what each of these instructions will do before you try them.

```
show first [apple peach pear]
show last [apple peach pear]
```

How accurate were your predictions?
5) What do you think will happen if you type the following? Make a prediction and then run the instructions in the command center. Write the results next to the instruction.

```
show first first [apple peach pear]
show last first [apple peach pear]
show first last [apple peach pear]
show last last [apple peach pear]
```

How accurate were your predictions?
6) Predict the result of the following instructions before typing them into the command center. Write the results next to the instruction.

```
show bf "lemon
show bl "grape
show bf bf "grape
show bl bf "grape
show bf bl "grape
show bl bl "grape
```

What does bf do? \qquad
What does bl do? \qquad
7) Predict the result of the following instructions before typing them into the command center. Write the results next to the instruction.

```
show bf [apple grape peach]
show bl [apple grape peach]
show bf bf [apple grape peach]
show bl bf [apple grape peach]
show bf bl [apple grape peach]
show bl bl [apple grape peach]
show bf bl [apple grape peach]
```

8) Predict the result of the following instructions before typing them into the command center. Write the results next to the instruction.
```
show first bf "grape
show first bl "grape
show last bf bf [apple grape peach]
show first bl bf [apple grape peach]
show first bf bl "grape
show first bl bl "grape
show last bf bl "grape
```

```
9) Type this procedure in the procedures center:
to eat :thing
show first :thing
eat bf :thing
end
```

Try running the procedure above by typing the following in the command center:

```
eat "lemon
eat [apple peach grape lemon]
```

An error message, first does not like as input in eat, is generated. It means that the procedure tried to grab the first thing out of nothing after you ate all of the other items in the word or list. Therefore, we need a common instruction, called a stop rule added to the procedure.

Change the eat procedure in the procedures center to include the the stop rule (beginning with IF)

```
to eat :thing
if empty? :thing [stop]
show first :thing
eat bf :thing
end
```

Try running the procedure above by typing the following in the command center:

```
eat "lemon
eat [apple peach grape lemon]
```

Is the error message gone?
10) Caesar's Cipher Level 1

```
to caesar :word
if empty? :word [stop]
show (ascii first :word) - 96
caesar bf :word
end
```

Try running the procedure above by typing the following in the command center:

```
caesar "touchdown
caesar "school
```

11) Think about how we should improve our cipher program!

Gary's Fraction Challenge

Make a procedure called PIE that will divide a circle into a fraction indicated by two inputs to the procedure, PIE. Below are some procedures to get you started.

```
Fraction 2 3
to rectangle
pd
repeat 2 [fd 50 rt 90
fd 300 rt 90]
end
to rec :length
repeat 2[fd 50 rt 90 fd :length rt
90]
end
to fraction :n :d
rectangle
repeat :d [rt 90 fd 300 / :d It 90
fd 50 bk 50]
It 90 fd 300 rt 90
repeat :n [fillit pu rt 90 fd 300 /
:d It 90]
rt 90
bk :n / :d * 300 lt 90
end
to fillit
setc "red
pu
rt 45
fd 2
fill
bk 2
It 45
setc "black
end
```

Or, in this version, you would type fraction 40035 to draw a rectangle with a length of 400 divided into $3 / 5$

```
to rectangle :length repeat :n [fillit pu rt 90
pd
repeat 2 [fd 50 rt 90
fd :length rt 90]
end
to rec :length to fillit
repeat 2 [fd 50 rt 90 fd
:length rt 90]
end
to fraction :l :n :d
rectangle
repeat :d [rt 90 fd :l / :d
lt 90 fd 50 bk 50]
lt 90 fd :l rt 90
```

```
fd :l / :d lt 90]
```

fd :l / :d lt 90]
rt 90
rt 90
bk :n / :d * :l lt 90
bk :n / :d * :l lt 90
end
end
setc "red
setc "red
pu
pu
rt 45
rt 45
fd 2
fd 2
fill
fill
bk 2
bk 2
lt 45
lt 45
setc "black
setc "black
end

```
end
```


Logo Quilt Project

An adventure in creativity using Lynx

Objective

You will each contribute to a collaborative quilt, programmed in Logo and drawn by the turtle. This is a classic Logo project modified to use a new web-based dialect of Logo called Lynx. (http:// lynxcoding.club)

Quilting as a craft or art form dates back to ancient Egypt. Quilt making was not only functional as a way of manufacturing blankets, but a collaborative form of expression embraced by Native American, African American, and Amish communities in the United States dating back hundreds of years. There are many styles of quilts, but the combining of different fabric scraps or pieces of uniform size combined to create elaborate

[^0]geometric patterns lends itself to Logo programming (and constructionism). Quilting traditions may be found in cultures across the globe.

In this project, each of you will be responsible for creating at least one "patch" that will then be shared with your peers. Each of you will then take some of those square patches and assemble a quilt made of them.

Getting started with Logo

The turtle is a metaphor for yourself. When you give it instructions, the turtle does exactly what you tell it to do. If your instructions were inaccurate or wrong, you will either receive an error message or the result of your instruction will be different than what you anticipated. In either case, you need to debug.

The words built into the Logo vocabulary are called primitives. Multiple instructions may be run in sequence from the command center of Lynx as long as there are spaces between the words and numbers.

One of the powerful ideas of Logo is that once you figure out how to do something, you can "teach Logo" or "teach the turtle" a new word that remembers that sequence of instructions. These new words are called procedures. Procedures behave exactly like primitives except they are unique to a particular project. In other words, user created procedures are available to use as long as they are defined in that project (file).

Procedures are defined in the procedure pane in Lynx. They always begin with the word, TO, and end with the word, END. Capitalization is never an issue in Logo.

For example, type foo in the Command Center and Logo will present the error message, I don't know how to foo.

We can define foo by typing the following instructions:

```
to foo
fd 57 rt 144
end
```

Now type cg pd foo in the command center and hit enter/return.
CG clears the screen and puts the turtle in the center of the screen. PD puts the turtle's pen down. The turtle has a pen stuck in its belly button and when it is down and you command it to move, it leaves a trail. FD is the command for forward and it takes a number of turtle steps as its input.

Think of procedure names as infinitive verbs. They produced action when used in Logo.
Procedures and primitives may be combined to create new procedures. Procedures are like building blocks that perform a function and may be combined in infinite variety to produce complexity. Procedures used in other procedures are sometimes called subprocedures. There is no limit to the number of procedures you
may write. They just all need to be typed in the Lynx procedure pane and follow the rule of beginning with to and ending with end.

Next, add the following procedure to your procedure pane.

```
to foobar
repeat 5[foo]
end
```

Run foobar in the command center. What happened? What does repeat do?

Writing and Running Procedures

A procedure is a list of instructions with a name. All procedures begin with to and end with end.

The order in which procedures are created in the procedure pane does not matter as long as all of the procedures are formatted properly, beginning with to and ending with end. Putting a blank line between procedures makes them easier to read and debug.

Let's start programming!

1) Each of you must open Lynx, start a new project, name the project, and then type the following procedure into the procedures area.
```
to frame
setcolor "black
pd
repeat 4 [fd 100 rt 90]
end
```

Can you predict what this procedure will do before running it in the command center?
A list of colors the turtle knows may be found here.
2) Next, create a new procedure that is named with your name and perhaps a number (in case you create more than one patch). Each patch will begin with the command, frame. Then you will tell the turtle what to draw within the constraints of the patch (square).

For example:

to gary1	to jose	to yumi
frame	frame	frame
end	end	end

Important rule!

Everything the turtle draws in your patch must be within the square AND the turtle must return to where it began facing in the same direction. Returning to where you began is called state transparency in computer science. It is important for making the patches flexible and portable in this project.
3) Use cg patch and then a series of commands in the command center to design a pattern within the square and return the turtle to where it began. Then copy and paste those instructions into a new procedure, for example:

```
to maria1
frame
rt 45 fd 50 bk 50 lt 45
end
```

4) Create as many quilt patches as you can design. Be sure that each procedure has a unique name.
5) Save your project to the cloud by clicking on the
```
{
- button in Lynx.
```

6) Copy and paste your procedures (as text) and share them with your friends via email or posting in a collaborative space.

Make a Quilt!

1) Copy and paste the procedures from your friends into your Lynx procedures. (Make sure that there are no duplicate procedure names. Rename some if necessary. You will only need one patch procedure since you are all starting with the same one.
2) Try your friends' procedures and see how they look.
3) Decide which of these patches you wish to assemble into your own quilt.
4) Figure out how to assemble the quilt using the patch procedures and other turtle graphics commands.
5) You should use at least four patches in a quilt.
6) Write a new quilt procedure to automatically draw your new quilt!
7) Save your work to the cloud.
8) Share the project with friends by clicking on the collaborative space.

Here is a sample Quilt project

All of these procedures should be in the Lynx procedure pane if you wish to try our sample quilt	
```to frame setcolor "black pd repeat 4 [fd 100 rt 90] end to sylvia1 frame setc "red pu rt 90 fd 30 left 90 pd repeat 4 [fd 40 rt 90] left 90 pu fd 30 rt 90 end to sylvia2 sylvial pu setc "blue rt 90 fd 100 rt 180 sylvial pu fd 100 rt 90 end```	```to quilt repeat 4 [sylvia2 rt 90] rt 90 pu fd 100 left 90 sylvia3 rt 90 sylvial left 90 end to sylvia3 frame pu fd 50 rt 90 fd 50 repeat 360 [pu fd 50 pd fd 0 pu back 50 rt 1] back 50 rt 90 fd 50 right 180 end```

Quilt is the superprocedure that assembles the quilt you design.

## Challenges

- Use one patch procedure as a subprocedure in others.
- What sorts of optical or geometric illusions can you create by just rotating a patch?
- How many patches can you get on the Lynx screen?
- Try the same project with larger or smaller patches.
- Could you program the computer to create random quilts?


## Aesthetic tweak

Replace your existing frame procedure with this slightly improved version. What does it do differently?

```
to frame
setcolor "black setpensize 3 pd
repeat 4 [fd 100 rt 90]
setpensize 1
end
```


## Turtle Cheat Sheet

Here are some turtle graphics primitives to get you started.

## Notes:

- \# is the sign for inserting a number as the input to a command
- Be sure to use spaces between words and numbers!
- Refrain from using setpos. That command makes it hard to move, reorient, or resize quilts.

Forward \#   FD \#   For example, fd 50	Back \#   BK \#	Right \#   RT \#	LEFT \#   LT \#
CG   clear graphics Clears the screen and puts the turtle at the center	Clean   Clears the screen, but leaved the turtle where it is	PU   Pen up	PD   Pen down
REPEAT \# [list of commands]   For example, repeat $4[f d \quad 62$ rt 90]		SETC \#   set color   SETC 57   SETC "black   SETC "red	
SETPOS [\# \#]   For example:   setpos [10 20]   setpos [-25 10]   setpos [ -10 -20]   setpos [20-25]		SHOW POS   Displays the current position of the turtle (in coordinates) in the command center	
SHOW 3 *4   Shows the product of 3 and 4 in the command center. This is the same as asking the turtle to multiple $3 \times 4$   Show runs a reporter or operation and displays the result in the command center.			

## Final Thought

Collaborative expression composed of personal elements created by communicating mathematical ideas to the computer within an extremely open-ended structure makes this project an important "object-to-thinkwith" for educators.

## Resources

- Lynx web site
- Getting Started with Lynx manual


The next several project ideas were written decades ago in LogoWriter, an ancestor of Lynx. You may use Lynx by pointing your browser to http://lynxcoding.club.

The code should work with little to no modification.

## LogoWriter ${ }^{\text {TM }}$ Math Reporters <br> (Primitives)

The following primitive procedures take zero, one, or two values as input and output one number or list of numbers as a resulf...


No. Inputs
BC
COLOR
COLORUNDER
HEADING
POS
SHAPE
WHO
XCOR
YCOR


One Input
ABSnumber
ARCTAN number
$\operatorname{COS}$ manter
COUNT wordilist, or mamber
NT number
MINUS number
RANDOM number
ROUND number
SIN number
SQRT nambler
TOWARDS [pas!
OUTPUT salase
OUTPUT or OP reports ias input


Tra livents
ITEM iften e object
REMAINDERAintsor dividend
Infix Beporters_with 2 Inputs
< > =are prodicates which
nope TRUE ar FALSE
EQUAL? item 1 item 2
is the prefix equivalent of $=$

## Useful Mathematical Reporters

SHOW SUM (1) 23 4) 10

```
to aun ;1lat
If empey2 t1ist [output 0)
eutput (first iliat) +
(aum butfirat ilist)
sed
```

SHOW AVERAGE [1 2 3]
2
to average :118e
evtput sum ilist $/$ count
:113t
end
show factorial s
120


```
CO Ubvbde sClvbsor
ids vicond
ouspue dogntence int
\:diviager / rdividond)
"remainder remainder
Idiviaor idiflidends
end
```

SHOW DISTANCE 150 50]
70.7

Distance reports the distance between the current turtle's position and a specified set of coordinates

```
co dlsennce :c00st
```

ewtput aqrt isgeineer -
(\{irat scoord)\} * (aqr
tyeer - (last Ieverdi)
end

## LOGP/juiter <br> Dollar Words By Gary S. Stager (Idea by Marilyn Bums)

How many dollar woods can you think of? What do you mean that you don't know what a dollar word is?
A dollar woed is a word la which the sum of it's individual lemers equals \$1.
Here is how it works... The letter " $A$ " is worth $16,{ }^{\prime \prime} B^{*}=26,{ }^{\circ} \mathrm{C}=36, \mathrm{Z}^{\prime}=264$, enc...
Type these three short procodures (below) on the flip-side of a LogoWriser page. Be sure to name the page!
In order to find our the value of a word (using the "Dollar Word" rales), rype SHOW VALUE "theword (thewoed should be replaced with the word you wish to evaluast).

```
SHOW VALOE "Gary
$0,51
SHOW VALUE "ELEPHANTS
```

$\$ 1$

How many dollar words can you think of?
What is the shornest possible word thas could be woeth $\$ 1$ ? What is the longes? Cas you think of some quarter words? How about some dime words?

The Procedures:

```
te value zword
sutput word "s (getwalue twosd) / 104
4nd
te getvalve swoxd
If empeyt a word lop 0]
```



```
end
te ascid, walue voharacese
If (ascid zeharacter] > 96 [output {ascid zcharacter] - 95]
If {aseil seharaceer} > 64 {outprat (aacil seharaetar} = 64]
gutput asesis Icharacter
tnd
```


## Ontional Proctures

Check and see if a woed is worth $\$ 1$.

## Type:

SHOW BOLLAR? "GRAY
False
SHOW DOLLAR? "ELEPHANTS
True
to dolilar? ;word
outpot 100 " setwalue iwerd end

Make a vool no evaluate words worth

## different amounes of mpecy

```
te woxch iwned swalue
outpur ivalue = patwalue
;word
end
\begin{tabular}{|c|c|}
\hline \(t\) te quarter जukput 25 and & te nickel owtpue 5 end \\
\hline te dime & to dollar \\
\hline output 15 & ontpur 100 \\
\hline
\end{tabular}
```

SMOU WORTS "GRRY GUARTER FALSE

O1991 Gary S. Staper N.A.M.E.

Fallion Edacation Ceratr
51 Clifford Drive
Wayne, NJ 07470
Voice: (201) 633-3121
Fax Et: (201) 628-8837
C1S: 73306,2446
Applelink: K0331/ BITNET:
K0331@Applelink_apple.com

A paindrome is a word or mumber in wheh ir's chancters or digits are the same backwards and forwards. Bob and 1221 are both examples of palisdromes.

In this activiry we will focus on numerical palindroenes.
Any number cas eventually become a palindtome by applying a simple function. If a number is sot a palindeome, add the revense of the number to the number itself, Repeta this process until the sum of the two numbers becomes a pallindrome.

157 is mot a palindrome, som...
157
$+751$
908 is not a palindrome, so repear the process-
$+809$
1717 is nos a palindrome, so repeat the process...
$+2171$
8688 is a palindrome!
It vook forr generations to make the number, 157 , into a palindrome. All mumbers will evenrually become a palindrome, but seme take loeger than ohern. What kind of numbers are more likely to take several inerations to becoese palindromes? Do odd nambers take longer? Do peime numbers ake losger that coenposite mumbers?

Test your hypotheses and collect daea using the following Logowriter procedures.

## The Procedures

The first procedure we need is a simple recursive operabios for reporting the reverse of a woed (or number)

```
te reverse luoed
If enpty? rword [output rmord]
butput w|rd lase iwbrd reverse bl imbrd
end
```

The fras see of palindrome procedures work as a command - printing the number of geterations it takes for a number so become a palindrome.

```
TO PALTNEMCNE INtNRETA
```


twb
to tind-palindrome smamber :ebunter
If imubber a reverie inumber [paint Inumber output ievanter]
print raumber

end
Type Palindrome 157
157 Is a 4 generation palindrome
te Ery, fombers tseart zfinish
if ratart $>$ :finigh Iaropl
palindreme :atart
sEy, numbers istart +15 ifinish
wad

Type Try-numbera 150160 to primous palindrome information for the numbers 150 -160.

## Scoond Palindrome Problam

The second palindrome peocedures use the same reverse procedure and faction as a reporter. Palindrome now tukes a mumber as input and reports the number of generations it takes before the number becomes a palindrome. Remember that since this new palindrome procecdure is a reporter, it mast be preceded by a command. Put liele procedures on a new page!

```
SHOW PALTMDROEE 157
```

3
TO PALTmDNone amuaza

50

```
to IInd.palindrome :number sequnter
if inumber = rewerse inumber (vutput teounter)
output {ind,palindrome (:mamber * reverae imunber) i00unter + I
*Nd
```

to reverse :mord
If empty? :word (outpot :word)
autput word lase twond reverse bl tword
end

## An Overniahs Problem

The following Record procedure records all of the sumbers that ake more than two (2) getserations to become a palisdrome. Two generations was arbitrarily chosen. You may wish to change this number in the Record procedure.

```
E0 mebord vatart ;finish
|f {atare > :EinLak {acop]
make "qeancasions pulindrone :start
if igwoerations > 2 [pring sentence istart rpenerations]
recosd sacare + 1 sfinfah
end
```

Type RECORD 1100 to recoed all of the numbers berween 1 and 100 which take more than 2 generations vo become palindromes.

20 3m zithreex IC50NT
IF introas $=4$ [CP rcounty
PR iNLMasR
䒑HLS
gever "Whaser tMundien / 21


BD

If sargesth $=4$ [CO scount]
mithas Ewhert unthest
puys "yovass nmonser / z 〕
proge "yovers (rimpaer * 3) + 11
of 3.si anchaten scounz +1
BE
TO EvDer ancharis

ED
70 SETपए
co
PO
SETFOS [-134 -73]
BETM 9
Moucs "DATA. Wist !
50
To THers amanata
SETT INCMAEA + -75

10
FD- 5
Pa
nove
Br
30 wown
10
sitT -75
STTK xeccs +7
BLD

## Trlanalar Fractal

Put three points anywhere on the screen. Randomly choose one of the points and go from where you (the ourle) carnently are half be distance to the randomly chosen point. Repeat this process indefinisely.

Type: astur eo

```
** setup
eg
sace 4
pur.does 0 2
and
if zatare > 4limit \stepl
```



```
pu
sutpos 113t (139 - raedon 273) (b0 - randon
140)
dot
make zatart pos
pot.dots istart + 1 ilinit
end
*0%
sete 1
tind-doe thing randon 3
90
end
so Elnd.dot ipes
seth evwards ipos
00
fd (diszance :pos) / 2
dot
4nd
to distance ipos
autput sqet (sq {mogr - tirat rpos)) + {sq
(yoor - Lask rpos))
and
to sq anumber
0p inamber * znumber
4nd
ce bif-one
0g
pu
sate 4
serpos [-120 - $01
dat
make 0 pos
satpos (0 60)
make 1 pos
dot
setpos (120 -64)
make 2 pos
dot
g%
*nd
Es doe
pa
640
p/
end
*0 gea tlimit
find.dot thing randon ililmit - I
go2 slimit
end
Co setup2 :lisit
Og
sete 4
```

put.dots 0 tilatt $=1$
Page 2
end

## The Iee Cream Stoon. Problem

 inade slatroosm. There was a flopr-to-seliling-hiph chart ceseining picnrut of ice creans asest. Whes I inquired abeal the chert I warr woid that che mulens' problen miviey book posed the following problem, " If jou hed 17 seaspr of let crias end as analmitid mumber of singho, doulle os briple Alp comas, can you make a chart of the 30 posilily combinationt of canes based on 17
 posed by the andertr conald have bees done with brate forct by a jonila. My question was, Why does 17 seaops generave 33 combinationsi*

If you have X scoops of ise cream and an unlimited supply of single, desble, and triple dip cones, how many possible combinations of servings cas you make?

Type: ics.caziva (atartiog of seoopa) (1ialt ) of seoops) (aumber of kiads of eones)

This first experiment prints out all of the possible combinations for a given number of scoops.

```
*O ICE.CNENM ;5%MOT &LDET% :SCOOPS
3) [T\ D\ $]
scoopLIST ISTMK% ILIKE% ISCOCPS
Dm
ta soooplist itetal slinke iscocps
If itotal > ilimit (atop)
make rtotal tryeach 9 rfcocps itocal
FRTMTLIST THING {TOTAL
pe tse [There axe] count elying atotal
(number of oombinatigns of) itotal "soovpg)
make "data.liat lpat liat stotal count
thing icotal idata.15at
acoopliat rtotal * L iliait iscocps
end
to tryoach thevmany sscoops ztotal
if ragoops = I (f op (1ist (1ist itotal)))
If (iboveany * istoope) > itotal [op (1]
op se tputall thoveany Eryoaca 0 :acoopg -
I ztotal = ithovasay * segoops sryesch
thowanny + 1 isesops stotal
and
te fpucall ifliest INMa
14 empty7 ;list top (1)
op fput fput iflese firat thiat spotall
zfirat be fluat
and

\section*{Experimental Marh Aetlvilies in LegoWriter}
te print lisat tilat
If enpty? aliat [atapl
pr Last idian
printilat bl sifat
end
- es ourtup
make "data.1iat [1
end

ren.crinat 153
T 3
4 क1
fiser are I sumber of eambiaetians of I asoope
419
4 \&

100
411
451
Thete are 1 namber of embinations at 1 nenope
181
020
012
444

118
142
© 2
dit
045
thers are 1 wamer of ewshlaytions ot 1 aesops
The following experiment prins just the eamber of scoops and the tumber of possible combinations 50 that we can asalyre that data without the claterer of the actual comblinadions

Typet saviacmoll (atartiog of seoopa) ilaite
to swwemenory teotal silede
if rtotal \(>\) ilinit [atop]
14 member? last itotal [0] [aavepage botton]
eloarname ztotal = 1
reayele
startwp
acoopliat ataral itetal
Insert oe char 32 tdata.ILot
saveremory ztotal +1 rilmit
4nd
```

to mesoplifat itotal ilindt
If Icecal $>$ iliait (acop)
make itptal tryeach 03 itetal
make "daea. Llat lpat lise itocal count
ehing :total idata. 1 ise

```
sedopliat teotal + 1 tIInft
Pagt 3 .
end
te tryesoh thevmany iscoeps itetal \(t^{\text {r }}\)
14 tsooops - 1 i op \{1ist \{1iat itocali)]
If (thownany * iscoupa) \(>\) teocal fop [1)
op st fputail abdomany tryeseh 0 iseoops 1 iteval - shownany * secoops tryouch shourasny + I raseops itotal
end
```

to tputall aflrat alise
If eapty? iliat lop [1]
ap fput tput ifirst firat illst fpusall
zilisat be slist
sod

```
E0 priatilat :11at
If enpty iliat (acop]
pr last silas
paintilat bl :11at
end
to startup
make "data.1iat []
end
A. Sompit of the restits.
码10] [9 124[10 14] [11 16 [12 [15] [13 21] [14 24 [15 27] [16 30] [17 33) [18 37] [19 40) [20 44][2148] [22 52] [23 50] [24 61] [25 65\(]\) [20 70] [27 76) [28 80] [2985] [30 91] [31 98] [32 102] [33 108] [34 114] [35 120] [38 127] [37 115) [30] \(\left[\begin{array}{lll}{[38} & 140]\end{array}[39147]\left[\begin{array}{lll}{[40} & 154]\left[\begin{array}{lll}41 & 161]\end{array}[42\right. & 169] \\ {[43} & 175\end{array}\right]\right.\) [44 184] [45 192] [46 200] [47 208] [49 217] [49 225] [50 234] [51 243] [52 252] [53 201] [54 271) [53 230] [56 290] [57 300] [58 310] [59 320] [50 341] [81 241]
 (8) 480
e1939 Gary 3. Stager
Ite Craam Scoop Code by Brian Siliverman a Gary Stager

Gary 3. Stagar
N.A.M.E.

Fallion Efueation Cantur
51 cultoed Drive
Wayne, NJ 67470
(201) 633-3121

Compuserve: 73306,2446
NW ETN: namegs Applailink: K0331

\title{
The World's Greatest LogoWriter Function Mieroworld
}

\author{
01987 Gary S. Stager zeagh Draft
}

At be 1917 Eant Const Logo Confereves, E. Puul Ooldenbers preseated some lideas for learning the ceocept of functions or mathematical operations in Logo. I was as slways lespleed by his presentation and decided to spend the sext few days (aleeplessly) exteading and embellisting the idess put forth by Paul.

Puul Coldenbers taggensed thas stadeasa could concrecire and understand the concept of madematical fanctions by being presented with sufficiest bools that woold allow them to explore the same problem in a number of domains. His Lopo examples demoastrated how a fubction could be manipulated through the use of "mathemarical sentences" and graphs.

My intest was to create a Logo microword in which the notion of mathematical fusctions could be explored by students of all ages, not just in two domains (sentences and graphs), but in at least four domains. This allowis sudeas, regardless of divergent learaing styles to find a comfortable medium for eonceprealiring these concepos. The four sexs of sools pretent in this LogoWriter Fuscrion Microworld art, Mathematical Senvences, Graph Tools, X/Y Table Teols, and Funcion Machines,

It the spirit of a Logo microworld, all of dhese tools are extessible, self-correcting. inherimatly interesting (I hopel). non-ibreatering, and contain powerfal ideas. The stadent(s)
bas complete control over the savironment and enough memory to build his/her functions -- The eatire mieroworld and student procedures fas eomforably is 4 K of memary!

The following is a short nacrative on bow a problem may be explered and potentially solved by a child or group of chaldren using this microwerrld. All foar aspects of the software will be illuatrasod, but it is byno means secessary to work la all four domaias every time you wish to explore with the mberoworld. The order for asing the particular tools is also incooseganetial. I have also iscleded a lessoa plas for a game which I spontaneously created while working with a group of elementary strodents. I call the game "Batule of the Functions \({ }^{3}\) and the kids love playing it. "Baetle of the Fusctions" rums out to be a very nise supplementary activisy for uting this LegoWriter Futcriga Mcroworld.
it

\section*{Getrine Startedt}
1) Load LogoWriter into your Apple. (Sorry I haven't ryped the procedures in other verrions yet,
2) Insent your Praject Scrapbook Disk Volume lato the dik drive and press ESCAPE
3) Selees the FUNCT.WORLD page by uaing the arrow keys to pace the cursor on this page and peess RETURN.
4) Wat a few seconds while be sool procedares "sneak" leno enemory.
5) When the cursor is Blinking in the command center it is probably a very good idea to rename yoer page so thas the original procedures on the風p-side are not despoyed!

\footnotetext{
Type
watepagz "pageanae
}
6) Eiber the stadeat(s) or teacher should then flip the page to the lif-side and delete aay unwnateduactons (mathematical operarions) and crease their own, depending oa their age, ability, and what they are sexdying.

\section*{Creatine a I. Ans Function:}

The power of this microworld lies in its flexibility. Firn graders (or their tewchers) or precalculas arodents in high school cas create appropriate madhematical functions by using the same simple structure. Remember, all LogoWriter 'procedures are writtea on the Flip-tide of tbe page. Hit Apple-F to flip the LogoWritur page to the fip-ride.

\section*{All Fuactions in this} Microworld Have One Numerical Iaput and One Numerical Output!

This includes the abilify to use mathemarical primitives or nools already in LogoWriter, For eximple, \(+, *, *\) SQRT, DISTANCE, TOWARDS, ABS. INT, SIN, COS, ROUND, 4SE.

\section*{Elementary Eunctions}

20 20 Tus iscomen
op ancuake +2
be
T0 neos impers
ep inchacr +5
ロ0
TO socpurs inconata
op imbuter * 2
อฮ
TO EPLIT LMEMSER
of imphams / 2
De
Notc: The czacompgremeg funcrion uses two other
functions, \(P\) In and ozwarter in colculating 4 walus.

\section*{I. Mathematical Sentencest}

Once you bave created some mahemarical fuaction procedares, you cas solve wond problems by stacling up these fanctions and providing a eumerical lapat. This ean be dooe elther in the Command Center or ia a LogoWriter procedure. The mathemarical faccions art calcolated from right 10 leth. The mexaphor la has a tramber is being dropped laso a function machine aded the result is dropped ints the preoteding function machise uadil a flaal viloe is outpumed.

\section*{Eac Erampile:}
 apos 5
40
Is the aaswer curpuned
This ia be same as sayiag
\((5+5) * 2 * 2 * 2\)
4mow truper wos maviry sputy rmass tgonse 2
24
is the answer cupaned
Tis is be sume as saying \(\left.\left.\left.\left(c^{(c(2 * 2)} * 5\right) / 2\right)-7\right)+5\right) * 3\)

More: This is a good time ro play the "Bantle of the Functions" game.

Problems may be posed by the shudent or the teacher and can their remulas eas be exploced in be mathematical sentence, graph. table, or machine dotmaiss. For the sake of discussion, we will try to answer a problem that may be puazling to some young sadents (or taduits).

Is the output of.

DCuazs anos 10
equal to...
anos poungs 19
77
You may explore fhls problem in the way deseribed above or in any of the following ways:

\section*{Graph Tools:}

If you have already figured out that the iwo equarions are not equal, the following question miny be asked:

Is here ANY nunber which can be inpotted inse boch equations and give the starse cutput

One way to fied a solvtion to this problem is to grapla the equations. This set of tools pluga in numbers from -80 to 80 and plots the points which are ca the sereen. The first problem would be addessed as:
\[
Y=(x+5) * 2
\]
\(X\) is the number pluegged in by LopoWiture and the polat plomed is the cocerdinate poir of [XY]

\section*{II. Using the Graph Teols:}
1) Type

Cl Cz
2)Type

Gxio
His draws be X Y axis
3) Yor may thea select two scales for the graph; wipenasus or csesesp
wibenaves makes each notch on the axis equal 10 and ctosery makes each notch on the axis equal 1.
wreaware is the defiult seale.

\section*{4) Type}
emagit tpouncia apos ; \(\boldsymbol{X}]\)
or...
Type
cave is - \(13 / 21\) ETC..
5) X muat be included in the brackets of any function you whish to groph. Any filaction you or octers have created or is a LogoWriter primitive my be included in in equation inside GRAPHIY list, as long as \(\mathbf{~} \mathrm{X}\) is usod.
6) If you wish to see what the equation a00s pouser ix might look lige on the same griph, it is probably a good idea to change the turtie's color by typing. sxac \((0-5)\) and thes , vise gruph.

There is a eumber which makes boh equations equal if and ooly If the two lines insersect on the graph. The polat it which they ateriest is be aumber which makes both equarions equal. This is a coocept that alwnys elluded me through aumerous math courses and I suspect thas others will experience simila mathematical reveladoas by ating this microworld.
7) You may change the graph's scald at any time by using MIDEANGEE OR CLOSEOP. Sometimes you may need to put a setie facser fa your equation so that the result is graphable.
8) Your praph may be printed at any time by typiag 2xantickera.
9) Clear the screea and repear the procedure for different fanetions is often as you wish.

\section*{III. Table Tecks:}

The table tools afford the user the oppornunity to create an XIY table of results trow an inpumed equation. The XIY eable provides abother medium for comparing the results of several funcsoes.! will continue uting the previous
example in demonsuralng how the cable tools are used.
zasis requires 4 iapus; the equation, sarting \(-X\) value, an ending i \(X\) value, and the lincremest by which you wish \(\mathbf{X}\) wo change yilue.

\section*{1) Type}

Ca ct

\section*{2) Type \\ zambitpoqacy apos : x \(-5.51\)}

This means: rua the equation Douser apos \(t \mathrm{X}_{\text {, }}\) the first number plugged in for -X will be -5 , no : \(X\) value will be higher elan 5, and platy in each integer between 5 and 5 if we incruase te X value by 1 each time.
3) Observe the results of the table. If there are a lot of treules, hir APPLE - U and use the down arroes to scroll through the dan. Thea hir APPLE - D.
4) Recoed the resuls with either pencil and paper, nkartscerra, or phantrectio.
panirrmerto is recoemmended if there was a wide range of nimbers ased.

\section*{IV. Function Chunks}

Anocher way of exploring the effect of functions on a number is to create a proportiodal trapkie represtanation of the function using LogoWriter's turte graphict capabilities.

The simple tool procedare, sat, requires a numerical input and draws a restangle the height of the input.

\section*{For Erample:}
ank 50
draws a rectangle 50 iteps high
move. I
ane Botres 59
druws a recrangle 100 steps high

\section*{move. m leve. R}
 druws a rocaatle 75 sxeps high
move. it or move. x moves the portle to the left or the right so that the next bar can be drawe.

Otvieusiy, function chanks are an excellent mediam for understandiag fraction arithmetie, maio, and propertion. As in the ocher four parts of the microworld, any ons inpus marbemadoal operation may be tesed with the BAR, novz. R., and MOVEL procedures.

\section*{V. Function Machinest}

Probably the moas eweiding and educatiosal aspest of the LogoWrimenfunction Microwcrld is the ability so represemt functions and equations in fanction mackines. Fanction machines are a graphic way of solving a mathematical problem. In this microworld you actually see a mamerical inpot to in the "hopper" (nop) of a machine and come out ils "spour" (botiom) so that the resalt of one function cas be passed so the next functige (machine). The last aumber displayed is the result of all of the function machines worlding mgecher (the equadoa). This microworld has the ability to ese up to 12 fanctions at ence. Due to scrten Fimizations, the functions cas sot be dieplayed in a vertical line bot mber 4 columns of 3 machines At the end of a column the resmik (hus far) is passed to be wop machine of the next column. The procedare for using the functien enachines is as followe:
1) Type

\section*{}
this eleas the graphic serven and poaldoss the rurcle in the proper place for drawing the function machines.
2) Type

DRaM tanos pouszy] asy.number or any orber combination of funcrions (up to 12) la the brackess and give a numerical inpot.

The function machines will then be drawn and a gumerical answer will "drop out" the bowem.
3) Type manrzickers if you wish 4 hard copy of your function machines.
4) Repeat Steps 1-3 as many times as you wish to solve 'function problems.

What would happen if you doubled I twelve times? the result be a small number or a large aumber \(T 7\)

\section*{Type \\ \\ \begin{tabular}{|c|c|c|}
\hline IV & โD0q32\% & \\
\hline Dousz? & Dquatz & Douaz: \\
\hline oumse & B9gaty & Becasx \\
\hline ousta & Doun土m & Dounts \\
\hline 90032x & - & \\
\hline
\end{tabular}

Nate for arpsammers: There ore no gioblal variabier used in the Logowriter code for the function matchint part of che microworid. All watues are parsed from ane procedure to another.

Students maty crease any function they want. For example:
```

%0 2%LES 1NdNass
Qurguz 2 + ;NCNazR
ED

```


```

0UTFUT smunders + 15

```
0UTFUT smunders + 15
ge
```

ge

```

50 Dopsus 1 Mdvages
GUTPUT zMOMER * 2
Evo

TO a SeS intamen
ourper zmmanta＊ 5 EDD
 QUFPGR sMTSEBER＊ 3 \(B 8\)

50 apLIF tMunder curpur anchers／ 2 Dob

TO FGUNE ENTMERER OHFPUT iNChast＊anthoser Bro

To cume natacer
ourpur incheas＊antmerse＊ antadiek
Dob
To Divisilirsa immones 60IPOT intheart／ 89
Be
20 2TMTMロ ：Nunthen
cotpur amaser＊2／3
Der
TO JFOURERE EMCDURS
GORPUF anchema＊3／4

\section*{Ero}

T0 ank thatrgar

k 19 ro 301
DPD
70 MONE．E
po
E8 94
rD 44
R 89
po
Ee

\section*{84}

2T 19
ri 45
48
po
D0

79 รアスにก5
CLEALuTVENETS
crevetoots
cravesovas
atragots＊rchict．poots
Momut．SCALE＇
Recricts
BD

\section*{HINGTION TOOLS}

THE PAGE NAME MUST BE CALLED FONCT．TOOLS

Funcrion anacit and \(\mathrm{X} / \mathrm{T}\) Franz fooms
（c）Gaxy ©．szagen 1507
30 GarD
Fow wors
\％0
KRFPER 30 ［X．NKES］
FU incues
10
REVER 29 ［Y．NKIt］
PD moke
Bo

50 x．Nucts
SETM 30
Marci
Tomase 10
ED
T0 T．acts
PD
SET： 0
morci
foronas 10
BD

T0 stamtup
mayg efocker 10
Dos
T0 worten
明 90
fornaze 3
BNCX 6
Foknage 3
BE 34
En

C5

［wapous．SCatr］

80
sitip IX
Ren ：Truscrics

PRENF Cspriancs ：Munctios ［Fincal ix cask 32 ［T0］ 68
－（x）\()\)
PD

1X 1
BD
 190uck ime
IF \(1 \mathrm{x}>\) groove［s\％ap］

RM 4TपNCETON
 reux imac
Dop

EF OR（1SENEE＊ 4 T ）\(>10\)
（！SCAKE \(=!Y)<-15\)
（tivory

（f3cxis \(*: \times 9 \times=149\)
［JTOP）
PU
SETPOS ETSE（3scaut＊ X ）
（1scaus＊IY）
PD

（190ase＊；\(Y\) ）
Bo
T0 100k
MENE＂acals 10
aRy
Ba

70 MORNE SECNE
MNas＂scane I
ento
De

\section*{TABLE TOOLS}

TO TABLE tMMNCTIGE 5 STANT 4 5 TO 1 INC
CF Ca IE
Crnset
If mor manty micazs
［WGMOE，SCMLE］
maxis＊x ；\＄7akt
PRENT（semtencs trunction

REPEAT s［PRENT［1］
TMBLEL sfunction ix isfor \＆DaC
0
```

\#O TNBLES \&FUNCTIEN I*
smack 1Eve
EF fx > :30cux [5T00]

```

```

\& FGNCTM0心
cyavel \&function 4x + 1DNC
300ux amye
80
T0 FRTNTNG\#N% 4X aY
Dusize% ix
TM3 ENA
Ca
PR IT
ED
T0 EMNRT
pu
8*T305 [-140 451
FD
$5]
Fcrowne is
BNCE 40
17 95
TGNowNS 5
BACK 115
F%
MrTPOS (-125 55)
218&G *gX
7%
streos [-94 5s]
MME5 *17
DO
    FUNCTION MACHINE
        TOOLS
70 #ETHP
C4 %d
18TPO! \-135 50)
tav
20 macmmet tafm
%T MONBEkT mum [4 T 101
    [PU sT2FgS LIST 4xcoon
F0$) + 70 501
FO
PCOSNARD 25
RT 50
peasmals }2
LF }13
ronseng is
BNCX 15
MT 135
PU
\mathrm{ ropwass }20

```
po
fopeave is
max 15
kT 45
Trimuan 22
nt 90
Torsous 25
kI 10
P6naxas 22
27135
FD
Foknoun 15
Back is
82 135
80
parunge 20
L5 45
70
fremane 15
mack is
时 45
FCRMEND 22
6 90
0

aflactiom imper
muxe＊ebe．pos pas
F
stryon hast（ixcoor
1000．p03）+16 （（ycook
7010．705）＋153
Laket hous
Derer hist（DxCogh
（010．Fos）+15 ）（（reobk
tots．p6s）+251 ITRPUT
REs円M LIST cycock
tash．Fos）（Creocs
somb．ross \(=501\)（kunt
sEmTENCE ：FINCFION
：TMFIT）
serpos soth．pos
10
mex 60
10
covipet（owew searrace з Function ：taver）
Bo
70 mecon spos
ocrmer rikst pob
ED

\section*{}
output Last pos
bo
LF 45

TO mave zips ampark
pu sermos ipds
LNBEE INCNAER
Da
To Resuty iped immack
20 sempos apos
Late inchask
Da
TO DRUM IETST amput
tandit bort ikist itnout
1
En

 1 Dapur outpur（1）
macatise tant
＇60TRGT DeIt Buthast iLIst goven，nacumat（Last thisti
 \(+1\)
D0
to zencise trixig
ED

\section*{Lego Moduto Destigns - O 1985 Gary S. Stager}

Recendy, I was siming in a ruher mandute collegt math course ind we were roudying the wople of matemabeal syurms and modulo arifmetce. While fhumbing thoough the mat uext, I came across oos of thove thmilize "chalienge problems" foind in the bectose comer of a page The challetge wuegstad drawitg a motulo design for a partoultar mod Belag a former matphobie ind born-1gain maht sudert I becarte insipued by the iden of uestint Logo to draw a modelo derign btied os any mod that is lapums.

Below ace the procoduras I cruasd for drawisg modulo designs. The first set of procodures draws a design bused oa the products of every pair of aumben in the mod. The second sef of proceduren driws a desiga basod on the product of coe fucsor and the other numben is the mod.

Modular Arithmetic - as adhmeric conatructed wa use a Fhiue ruther than insinime set of number. Modular ardumede la also sometimes caltod eloci ariblemeric, because the clock free provides a perfoct model. For enderples in MOD 12, \((7+5)=\) (Remainder of 15 and 12) \(=3\)

TO START :CIRC :MOD
CIACLE SIAC MOD
DOO MCO
END
TO CIRCLE :CIRC :MOD
PO
CIPCLIR CIRC MOD MCO - 1
END

TO CIRCLER :CIRC :MOD :COUNT IF CCOUNT \& O [STOP]
REPEAT \(360 /\) MCO [FD :CIRC / 3E0 RT 1]
MAKE :COUNT POS
NOTCH
CRCLER CIRC MOO COUNT - 1 , END

то нотсн
RT 90 FD 3 BK 6 FD 3 LT so END

TO DO ENUMEER1 3 MOD IF :NUNEEA \(>\) NOD - 1 [STOP] INC :NUMBER1 O MOD DO :NUMBER1 + 1 MOD END

TO INC :NUMEIM1 :NUMEIR2 :MOD IF A (MMBER2 \(>\mathrm{MCO}-1\) [PUSTOP] PLOT NUMAER1 ANMBEER2'MOO INC SNUMBER1 :NUMEER2 + 1 MOD END

TO PLOT :NUMBER1 :NUMBER2 :MOD PU
SETPOS THING MOD NUMAER1 MOD SETH TOWARDS THING (MOD NUMBEA! " SLIMBER2 MOD)PO
FD DISTANCE THING (MOD NUMBEA1 * NUMEER2 :MOD)
END
TO MOD :NUMBER :MOD
CP REMANDER NUMEER MOD END

Epr Macilota fl.CSD Ute chit procsulure in plate of the poter PLOT procedure.
TO PLOT TNUMSERI INUMRER2 IMOD PD
LINE THING MOD NUMBERI MOD THING(MOD NUMBER1 * NUMBER2 MOD)
END
This procenture wes the Mac'I Quichiluw Grsphic rousines and apeedr wp the draning of the design.
[For versions of Loge other than Mac Logu (LCSI), replace CG with C\$]

\section*{Hory the Prouram Werks}

START is ibe ioplevel procedure for Ais progran and uhen two inpuas he clroumberence of the circie and the mod you wish madraw.

A circle is ben draina and divided by the mod ppecified in be START procedure. As esch segretet of de circle is frwe the position of the NOTCH is mide iswe a plobal variate.

DO and INC art roonive procedures that devermine the produca of all the posuible facoos is a particular MOD. The fins facar and the product of the firt hactor and every ocher factor ia bee mod is thes paused is the PLOT propedurs.

The PLOT procebure is he hear and soul of the mobulo denign progran. PLOT seu the tarle's postivion io the tiaty of the fint factor (be posidos is worsed under the ases of cach mumber in the mods. The wriele's headiag is tee set TOWARDS the product of the frus facur and nooker mumber in the mod. The arrie then yoes forwird be dinascen Berwese the podition ba the elecie of the factor and位 poidica on the dircla of te prodict of de rwo factors. Wole: You may netd io write TOWNOOS and DISTANCE

\section*{Modulo Desiens arith Only One Factor}

TO START ICIRC MOD :FACTOR
CRCIE:CIRCMCD
DO PACTCR MOD MOD
END
TO CIRCLE FCIRC AMOD
PD
CIRCLER CIRCUMFERENCE MOD MOD - 1 ED

TO CIRCLER \(\operatorname{CCIRC}\) IMOD ICOUNT
PCOUNT < OTSTOP
REPPET 360 / MOD (FD CIRCUMFERENCE) 360
871
MAKE COUNT POS
NOTCH
CIRCLIR CHNCUMMERENCE MOO COUNT - 1 END

TO DO :FACTOR :MOD :BASE
IF MOD \(\leqslant 1\) (STOP)
ROT MOD FACTOR:BNE
DO FACTOR MOD - \(1:\) BNE
END

TO MOD \({ }^{\text {NUMMBER }}\) MMOD CPREMARCDER NUMBER MOD END

\section*{TO NOTCH KT90FD3BK 6 FD 3 LT 90 ED}

TO PLOT :NUMBERI NUMBERI MOD PD LINE THTNG MOD NUMBERI MOD THNNC (MOD NUMCRER1 *NUMEER2:MOD) END

1

\section*{Horr It. Works}

This program differs from the firt modulo design prograst by draving osly be produet of one particular factor und each nathber is ile specifiad mod. The firks set of modula denigy procedures drows the poodicas of every portiAle pair of haction in a particular mod.

The modilo desips pienured above is in MOD 20 with a faczor (or multiplim) of 5 . This meass that the warle connecta anch tamber ia mod 20 (1 m 201 with the prodact of hat namber atd 5. Tis mod would be nolated (20 5). To recreme tial desien appe:

START 709 im an comalurnee 30 s
Gary 5. Suager
Divectar of Triming
Network for Aevion is Mierocompuer Educaion
12 Locus Phace
Wayme. NJ 07470
(201) \(831-0133\)

\section*{A HISTOGRAM OF A ROLLING DIE (DICE)}

\section*{1 Dis}

TO SETUP
PU SETPOS [-130-75]
SETHO
END

TO ROLL 6 ANUMBER.

\section*{SETUP}

TF \(>\) I NUMBER (STOP)
RT90
PU
FD 30 * (1 + RANDOM 6)
LT90
BAR
ROLL 6 ANUMBER - 1
END
TO BAR
IF COLORUNDER = 0 [PD FDOSTOP]
PUFD 2
EAR
ED
Te graph the rolliteg of a dien type ROLL. 6 number of roils
The result for each mumber should be about even ia height.
To Gragh 2 Dica
Use the following procedure wial the ober procedures lived above:
```

TO ROLLI2 ENUMBER
SETUP
IF I > NUMBER [STOP]
RT90
PU
FD 15* (1 + RANDCM 6) + (1 * RANDOM 6)
LT90
BAR
ROLLI2 *NUMBER - 1
END

```

Type ROLL 12 aamber of roill to rell 2 dice. This should resalt in a bell-ikaped curve.

GARY S. STAGE
Ansidew of itrify sicion

\section*{Sites to Explore}

\section*{Dr. Constance Kamii's Web Site} https://sites.google.com/site/constancekamii/

\section*{Conrad Wolfram's TED Talk}
https://www.youtube.com/watch?v=60OVlfAUPJg

\section*{Stephen Wolfram's Intro to Wolfram Language}
https://www.youtube.com/watch?v=_P9HqHVPeik
Making Programming Accessible to
Everyone with Wolfram Language
https://www.youtube.com/watch?v=ALuQzgDvr2g

\section*{Creating a Video Game in Lynx}
http://stager.tv/blog/?p=2436 for video tutorials
Note: The following project starters are written for Lynx and its predecessor LogoWriter. It should be possible to translate them into Scratch (scratch.mit.edu) or SNAP! (snap.berkeley.edu)

\section*{Recognize the Superiority of Games Over Worksheets}

Kamii, C. (2000). Young Children Invent Arithmetic (2nd ed.): New York: Teachers College Press.

It is necessary for children to repeat adding the same numbers if they are to remember sums and build a network of numerical relationships (refer to Figure 5.2), Repetition in games is much better than with worksheets for many reasons. The fact that children are intrinsically motivated in games was discussed earlier in this chapter. Seven other reasons are given below.

First, feedback is immediate in games because children supervise each ' other. By contrast, worksheets are usually returned the next day, and children cannot remember and do not care about what they did yesterday.

Second, when worksheets are used; truth is decided by the teacher, and children get the message that truth can come only from the teacher. In a game, by contrast, the players decide whether an answer is correct. If one child says that \(2+2\) is more than \(2+3\), for example, children try to convince each other and arrive at truth by themselves. In logico-mathematical knowledge, children are bound to arrive at truth if they argue long enough because there is absolutely nothing arbitrary in logico-mathematical knowledge.

Third, games can be played at many levels in a variety of ways, but worksheets encourage children to crank answers out mechanically. In playing Put and Take (see Chapter 11), for example, some children can make 6 only with 6 chips that are each worth one point. Others say that they can make 6 either with 3 2-point chips or with 15 -point chip and a 1-point chip.

Fourth, having to write answers interferes with the possibility of remembering sums. Children are much more likely to remember sums when they are free to think " 2,3 , and 5 ," for example, without stopping to write "5." Some first graders have to think to make a "5" look different from an "S."'

Fifth, children are more likely in a game to construct a network of numerical relationships (refer to Figure 5.2). If a player rolls a 3 and a 3, and the next roll is a 3 and a 4, for example, there is a high probability that the answer will be deduced from \(3+3=6\). When children fill out worksheets, by contrast, they approach each problem mechanically as a separate and independent problem.

Sixth, children choose the specific games they want to play, but they can seldom choose the worksheets they get. If children can choose an activity that appeals to them, they are likely to work harder. In life outside school, adults constantly make choices, and children need to learn to make wise choices within limits.

Our seventh and last point is that children do not develop sociomorally by sitting alone filling out worksheets. They are well behaved when they are filling out worksheets, but working alone precludes the possibility of sociomoral development. In games, by contrast, children have to interact with others, make decisions together, and learn to resolve conflicts. As stated in Chapter 4, sociomoral education takes place every minute of the school, whether or educators are aware of it. By giving countless worksheets, we unwittingly reinforce children's heteronomy. Thereby, preventing the development of their autonomy.

\title{
MATH GAMES WITH PLAYING CARDS FOR CHILDREN IN GRADES K-3
}

\author{
Constance Kamii \\ University of Alabama at Birmingham
}

August, 2015

\section*{Kindergarten}

\section*{1. Lining Up the 5 s}

Number of players: 2 or 3 , preferably \(3^{*}\)
Three suits of cards A-10 are used. All 30 cards are dealt to the 3 players. Each player aligns the 10 cards received, face up, in front of himself.** The players who have 5 s put them down in a column in the middle of the table.

The children decide who will go first. (The turns then go clock-wise.)
The players take turns putting one card down at a time. They make a matrix by extending each suit to the right or left, without skipping any number (for example, the 6 of spades followed by the 7 of spades, or the 4 of spades followed by the 3 of spades.)

Anyone who does not have a card that can be played must pass. Each time a player passes, he takes a counter. Players can pass only 3 times***. When a player with 3 counters must pass a \(4^{\text {th }}\) time, that player is out of the game. He puts down in the matrix all the cards remaining in his hand.
 In this situation it is often necessary to skip one or more numbers, leaving blank spaces in the matrix between cards that are not consecutive.

The first player to use up all his cards wins.
By playing this game, most kindergartners learn to read numerals without a single lesson on how to read numerals.
*If there are more than 3 players in a game, children have to wait longer to get a turn. Having to wait is a waste of time that could be spent thinking.
** "He" and "she" are used alternately throughout this paper. "He" is used in the first, third, and fifth games, etc., and "she" is used in the second, fourth, and sixth games.
***We introduced this rule because (a) many children were passing without systematically examining all their cards for possible use, and (b) the more advanced players passed just to prevent others from using their cards.

\section*{2. Before or After \\ Number of players: 2 or 3}

All the numeral cards from one deck (A-10) are used. The cards are dealt to all the players, but the last card is turned up in the middle of the table. The players keep their cards in facedown stacks. The first player turns over the top card of her stack and tries to make a pair with the number that comes immediately before or after the number that is up. (For example, if a 5 is up, a pair can be made with either a 4 or a 6.) If a pair can be made, the player can take both cards and keep them. If not, the card turned over stays in the middle of the table and gets covered up by the next player (or the player after the next player, or the player after her, etc.).

Play continues until pairs cannot be made any more. The winner is the person who collects more cards than anybody else.
3. War (for 2 players)

Number of players: 2
All the number cards from one deck (A-10) are dealt to the 2 players. Without looking at them, each player puts his pile in front of himself, face down. The two players then simultaneously turn over the top cards of their respective piles. The person who turned over the larger number takes both cards. The winner is the person who collected more cards than the other.

If there is a tie, each player turns over the next card, and the person who turned up the larger number takes all 4 of them. (This is a modification of the conventional rule.)

Modification into a fast addition game. The person who announced the correct sum first wins both cards.

\section*{4. Find Five (also known as Piggy Bank)}

Number of players: 2 or 3
Eight cards each of numbers 1 through 4 (from 2 decks) are used. The object of the game is to make 5 with 2 cards (\(4+1\) or \(2+3\)).

All the cards are dealt. Without looking at them, each player makes a face-down stack with the cards received. On her turn, each player turns over the top card of her stack. The first player always has to discard the card turned over in the middle of the table. If the first player discards a 3, and the second player turns over a 4 , she, too, has to discard this card. If, on the other hand, the second player turns over a 2, this 2 can be taken with the 3 on the table. The person who collects more cards than anybody else is the winner.

\section*{\({ }^{1 \text { at }}\) Grade}

\section*{5. Double War}

Number of players: 2
This game is played like War except that the cards are dealt so that each player will have 2 stacks. Each player turns over the top cards of both stacks, and the person who announces the larger total first takes all 4 cards.

\section*{6. Tens with Nine Cards****}

Number of players: 2 or 3
Thirty-six cards, 4 each of A (1) through 9, are used. Nine cards are \(\quad \begin{array}{llll}6 & 2 & 3\end{array}\) randomly arranged as shown in the figure. The first player takes pairs of cards that make 10 (such as \(6+4,5+5\), and \(7+3\)). She then fills the empty spaces with cards from the deck. The second player continues the game in the same way.
\(5 \quad 1 \quad 4\)
572

The person who collects the most cards is the winner
7. Find Ten \({ }^{* * * *}\) (or Find Seven, Eight, Nine, Eleven, etc.)

Number of players: 2 or 3
This game is played like Find Fives, but cards 1 through 9 are used (a total of 36 cards), and the object of the game is to find 2 cards that make \(10(9+1,8+2\), etc.).

In Find Seven, cards 1 through 6 are used. In Find Eight, cards 1 through 7 are used, etc.

\section*{8. Draw Ten****}

Number of players: 3
This game is played like Old Maid, but cards 1-9 are used, and the object of the game is to find 2 cards that make 10 . One card is removed from the deck at random, so that there will be a card without a mate at the end of the game. All the other cards are dealt.

Each player goes through the cards received and puts in front of herself all the pairs that make 10 (\(6+4\), for example).

The players then hold their cards like a fan and take turns letting the person to the left draw one of them at random. If the person who drew a card can use it to make 10 with one of her cards, the pair is added to her collection of 10s. If a pair cannot be made, the card drawn is kept, and the next person draws a card.
****Becoming able to make 10 with 2 cards facilitates children's changing \(8+4\) to \((8+2)+2\), for example, and \(7+5\) to \((7+3)+2\). Having to make 10 with 2 cards thus helps children construct tens. It is therefore important not to let children make 10 with 3 cards.

Play continues until one person is left holding the odd card and loses the game.

\section*{9. Shut the Box}

Number of players: 2 or 3
Two dice and 11 cards numbered 1 through J are used. The 11 cards are arranged in a line in sequence from 1 to 11 (J), face up. The players take turns rolling the dice and turning down as many cards as they wish to make the same total. For example, if a 6 and a 2 were rolled, a player can turn down the 8 ; the 1 and the 7 ; the 2 and the 6 ; the 3 and the 5 ; or the 1 , the 3 , and the 4 . The player keeps playing until it is impossible to make a total with the remaining numbers. The numbers left unused are added and recorded, and the next player takes a turn.

The points left at the end of each turn are added to the player's previous total. The player who reaches 45 points first is the loser (or the one who has the smallest total is the winner).

\section*{\(2^{\text {nd }}\) Grade}

\section*{10. Go Ten****}

Number of players: 3
This game is like Go Fish, but cards 1-9 are used, and the object of the game is to make 10 with 2 cards. All the cards are dealt. (There is no "pond" in this game.) The players first put down all the pairs that make 10. They then ask specific people for specific numbers. For example, John may say to Katie, "Do you have a 5?" If Katie has a 5, she has to give it to John. John then lays this 5 and his 5 in front of himself, face up.

A player can continue to ask for cards as long as she gets the number requested. If a player is told "I don't have any," the turn passes to the person who said, "I don't have any."

The person who makes the greatest number of pairs is the winner.
11. Tens Concentration****

Number of players: 2 or 3
Cards 1-9 are used, and the object of the game is to find 2 cards that make 10. All the cards are arranged face down in neat rows. The players take turns turning up 2 cards, trying to make a total of 10 . When a player succeeds in making 10, he can keep the 2 cards and continue playing. Otherwise, he must turn the 2 cards over so that they are face down again, and the turn passes to the person to the left.

The game continues until all the pairs have been found. The person who makes the greatest number of pairs is the winner.
12. Salute!

Number of players: 3
Cards 1-10 can be used, but cards going up to 5 might be used at the beginning, when children are not sure about subtraction. The cards are dealt to 2 of the 3 players. The 2 players hold the cards received in a face-down stack. Simultaneously, both take the top cards of their respective piles saying "Salute!" and holding the cards up next to their ears in such a way that each player can see the opponent's card but not her own.

The third player announces the sum of the 2 cards, and each of the other 2 players tries to figure out the number on her own card (by subtracting the opponent's number from the sum that has been announced). The one who announces the difference correctly first takes both cards.

The winner is the person who collected more cards than the other person.

\section*{13. Quince}

Number of players: 2 or 3
Cards 1-10 are used, and the object of the game is to get as close as possible to a total of 15 without going over it.

The dealer deals 2 cards to each player, including himself, one at a time, face down. Each player looks at the cards received without letting the others see them. The player to the dealer's left begins the game. If his cards add up to less than 15 , he may ask the dealer for another card, hoping to get one that will bring his total closer to 15 . A player may keep asking for another card every time his turn comes, until he is satisfied with the total and says, "I stand pat," or until he goes over 15 and is out.

For example, in a two-player game, let's say a player receives a 6 and an ace. He asks for another card because \(6+1\) is too low to win. If the card received is a 2 , the total is only 9 . If the dealer receives a 9 and a 3, he could stop here but decides to ask for a card, gets a 5, and is out of the game. The other player automatically wins the round and gets a tally mark.

If there are 3 players, the one who has the highest total without going over 15 is the winner of the round and gets a tally mark. The winner of the game is the person who has the most tally marks (or is the first person to get 10 tally marks).
\begin{tabular}{lllll}
14. Twenty-Twenty \\
Number of players: 2 or 3 & & & 0 \\
\\
\begin{tabular}{l}
Cards \(1-10\) and 18 counters are used. The object of the game is to \\
make a total of 20 . Each player takes 6 counters and is dealt 5 cards.
\end{tabular} & & 5 \\
\begin{tabular}{l}
The remaining cards are placed on the table in a face-down stack. The \\
players take turns putting one card down at a time next to one that is \\
already on the table (see the figure). After putting down a card, each
\end{tabular} & 0 & 3 & 2 & 7 \\
\hline
\end{tabular}
player takes the top card of the stack to have 5 cards again.
When a player puts a card down that makes a total of 20 , either vertically or horizontally, she closes the line with 2 counters as shown in the figure. The person who uses up her 6 counters first is the winner.

\section*{15. Knock-Knock}

Number of players: 2 or 3
A deck of 52 cards is used with the following values: \(A=1,2\) through 10 are worth the values shown, and the face cards are each worth 10 points. The object of the game is to make the largest total value (or the smallest).

Each player is dealt 4 cards, and the remaining cards make up the drawing pile. The players take turns taking the top card of the drawing pile and discarding one. When a player thinks he has the largest total, he says "Knock-knock," and everybody else has one more turn. The person who has the greatest (or smallest) total is the winner.

\section*{\(3^{\text {rd }}\) Grade}

\section*{16. Multiplication Salute!}

Number of players: 3
This game is played just like Salute! (No. 12 above), except that multiplication and division are used instead of addition and subtraction. When multiplication is still unfamiliar, it is best to use cards going up only to 5 . Larger numbers can then be added as small factors become too easy.

\section*{17. O'NO 99}

Number of players: 2 or 3
The cards have the following values:
All the aces: 99 points
2 through 10: All the spades are "minus" cards. For example, the 2 of spades is worth -2 .
All the other suits are "plus" cards worth the numbers shown.
Face cards: All the spades are worth -10 points.
All the other face cards are worth 10 points.
Five cards are dealt to each player, and the rest of the cards constitute the drawing pile. The object of the game is to avoid making a total of 99 or more.

The first player puts a card down calling out the number (such as "Ten"). He then takes a card from the drawing pile to have 5 cards again. The second player puts down one of his 5 cards announcing the new total (such as "Fifteen"), and draws a card to replace the one used. This procedure is followed around the table. The person who reaches 99 or more loses the round.

The first person to lose 3 rounds is the loser.
Modification into a subtraction game. The same game can be played with subtraction, and the count starts at 99. (The spades become "plus" cards; all the other suits become "minus" cards. The person who reaches zero or less loses the round.)
18. Close to 100 (taken from Landmarks in the Thousands, by S. J. Russell \& A. Rubin. Palo Alto, CA: Dale Seymour, 1995, p. 109)

Number of players: 2 or 3
Cards 1-9 from one deck are used with a score sheet. Each player is dealt 6 cards. With 4 of the 6 cards, each player makes two numbers that, when added, make a total as close to 100 as possible. For example, a 6 and a 5 can make either 56 or 65 . If a 6, a 5, a 4, a 3, a 2, and a 1 are received, \(65+34=99\) is as close to 100 as possible. These numbers are written on the score sheet, as well as the difference between the total (99) and 100.

The cards used are discarded, and the 2 unused cards are kept by each player. Four new cards are then dealt to each player so that there will be 6 cards for the next round. When no more cards are available, the discard pile is mixed up and used again. Five rounds are played in this way, and the person with the lowest total score wins.

\section*{Close-to-100 Score Sheet}

Name: \(\qquad\)
Diff. from 100
Round 1: _______ \(=\)
Round 2: \(\quad+\quad=\square\)

Round 3: \(+\quad=\)

Round 4: \(\quad \ldots+\quad=\)
Round 5:_______ \(=\)

\title{
Multiplication
Games: How We Made and Used Them
}

Teachers introduce multiplication in kindergarten and the first two grades in the form of word problems such as the following: "I want to give 2 pieces of chocolate to each person in my family. There are 5 people in my family. How many pieces of chocolate do I need?" Children usually use repeated addition to solve such problems, as Carpenter et al. (1993) and Kamii (2000) describe. By third grade, however, many children begin to use multiplication as they become capable of multiplicative thinking (Clark and Kamii 1996).

Some educators think that teachers should teach for understanding of multiplication rather than for speed. This probably is a reaction to teachers' common practice of making systematic use of timed tests without any reflection, for example, about the relationship between the table of 2 s and the table of 4 s . In our opinion, children should have an understanding of multiplication and should develop speed. With our advanced third graders in a Title I school, therefore, we have been using games instead of worksheets or timed tests after the children have developed the logic of multiplication. The results have been encouraging. Toward the end of the school year, when the children had played multiplication games for several months, we gave a summative-evaluation test consisting of one hundred multiplication problems to finish in ten minutes. Every child in the class except one (who made two errors) wrote one hundred correct answers within the time limit. This article describes some of the games we used, how we modified commer-
cially made games, and what we learned by using them.

Seven games are described under three headings: a game involving one multiplication table at a time, games involving many multiplication tables and small but increasing factors, and games requiring speed.

\section*{A Game Involving One Table at a Time}

Rio is a game that is best played by three children. If there are four players, turns come less frequently, and children will be less active mentally. Rio uses ten tiles or squares made with cardboard, fifteen transparent chips (five each of three different colors), and a ten-sided number cube showing the numbers \(1-10\). For the table of 4 s , for example, we wrote the ten products \((4,8,12,16,20,24,28,32\), 36 , and 40) on the tiles. These tiles are scattered in the middle of the table, and each player takes five chips of the same color.

The first player rolls the number cube, and if a

Children practice a multiplication game.

\section*{Figure 1}

\section*{Easy products and increasingly greater factors}

5 comes up, for example, he or she puts a chip on the tile marked " 20 " for \(5 \times 4\). The second player then rolls the number cube, and if an 8 comes up, he or she puts a chip on 32 for \(8 \times 4\). If the third player rolls a 5, the tile marked " 20 " already has a chip on it, so the player must take it. The third player now has six chips and the first player has four. Play continues in this way, and the person who plays all his or her chips first is the winner.

This is a good introductory game, and most third graders begin by using repeated addition rather than multiplication. As they continue to play Rio, finding products when multiplying by 2 and 10 becomes easy. The next products that they master are multiples of 5 and 3 . Multiplying by \(6,7,8\), and 9 is much more difficult. The next category of games is more appropriate after this introduction to all the tables.

\section*{Games Involving Many Tables and Small but Increasing Factors}

Figure 1 shows easy products of factors up to 5 . When children know these products very well, teachers can introduce factors up to 6,7, and so on.

Examples of games in this category are Salute, Four-in-a-Row, and Winning Touch.

\section*{Salute}

In Salute, three players use part of a deck of playing cards. At first, we use the twenty cards A-5 and remove all the others \((6-K)\). Ace counts as one. Later, we use the twenty-four cards A-6, then A-7 (twenty-eight cards), and so on.

The dealer holds the twenty cards A-5-or forty cards if two decks are used-and hands a card to each of the two players without letting anyone see the numbers on them. The two players then simultaneously say "Salute!" as they each hold a card to their foreheads in such a way that they can see the opponent's card but not their own. The dealer, who can see both cards, announces the product of the two numbers, and each player tries to figure out the factor on his or her card. The player who announces the correct factor first wins both cards. The winner of the game is the player who has more cards at the end. (We decided that the dealer should hold the deck because when the cards were dealt, the players confused their "winnings" with the cards they had yet to use.)

When this game becomes too easy, children can use cards up to 6,7 , and so on, as stated earlier.

\section*{Four-in-a-Row}

This is a two-player game that uses a board such as the one in figure 2a, eighteen transparent chips of one color, eighteen transparent chips of another color, and two paper clips. Each player takes eighteen chips of the same color to begin the game. The first player puts the two paper clips on any two numbers at the bottom outside the square, such as the 4 and the 5 . The same player then multiplies these numbers and puts one of his or her eighteen chips on any 20 because \(4 \times 5=20\).

The second player moves one of the two paper clips that are now on the 4 and the 5 . If the second player moves one of them from 4 to 3 , this person can place one of his or her eighteen chips on any 15 because \(3 \times 5=15\). On every subsequent turn, a player must move one of the two paper clips to a different number. Two paper clips can be placed on the same number, to make \(5 \times 5\), for example. The person who is first to make a line of four chips of the same color, vertically, horizontally, or diagonally, is the winner.

The reader may have seen a Four-in-a-Row board such as the one in figure 2b. This board is not ideal because some children use only the fac-
tors up to 4 or 5 . The board in figure \(\mathbf{2 a}\) is better because it does not involve easy factors such as 1 and 2 and more difficult factors such as 7,8 , and 9 . The range of factors from 3 to 6 is more appropriate at the beginning because it focuses children's efforts on a few combinations at the correct level of difficulty. When the board in figure 2a becomes too easy, teachers can introduce factors 3-7 and a new board made with appropriate products.

We randomly scattered the numbers on the board in figure 2a and chose them in the following way. The board includes ten combinations of factors 3-6 because there are four combinations with \(3(3 \times 3,3 \times 4,3 \times 5\), and \(3 \times 6)\), three combinations with \(4(4 \times 4,4 \times 5\), and \(4 \times 6)\), two combinations with \(5(5 \times 5\) and \(5 \times 6)\), and one combination with \(6(6 \times 6)\). Because the board has thirty-six \((6 \times 6)\) cells, each product can appear three times and six products can appear more than three times. We usually use the more difficult products for the remaining cells, such as \(36,36,30,30,25\), and 24 . (We omitted the combinations \(4 \times 3,5 \times 3,5 \times 4\),

\section*{Figure 2}

\section*{Four-in-a-Row boards}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 24 & 9 & 20 & 15 & 30 & 18 \\
\hline 12 & 30 & 25 & 36 & 24 & 16 \\
\hline 36 & 15 & 9 & 18 & 20 & 36 \\
\hline 16 & 36 & 30 & 25 & 12 & 30 \\
\hline 12 & 20 & 25 & 15 & 24 & 36 \\
\hline 24 & 16 & 30 & 9 & 25 & 18 \\
\hline \multicolumn{6}{|c|}{3}
\end{tabular}
(a) A Four-in-a-Row board with factors 3-6
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 12 & 14 \\
\hline 15 & 16 & 18 & 20 & 21 & 24 \\
\hline 25 & 27 & 28 & 30 & 32 & 35 \\
\hline 36 & 40 & 42 & 45 & 48 & 49 \\
\hline 54 & 56 & 63 & 64 & 72 & 81 \\
\hline 2 & 3 & 4 & 6 & 7 & 8 \\
\hline
\end{tabular}
(b) A common Four-in-a-Row board

Children run through a practice game before entering into competition.

\section*{Figure 3}

\section*{Two boards for Winning Touch}

(a) Winning Touch to 6

(b) Winning Touch to 7
\(6 \times 3,6 \times 4\), and \(6 \times 5\) from this consideration because \(4 \times 3\), for example, was the same problem as \(3 \times 4\) to our students.)

\section*{Winning Touch}

Figure 3a shows the board for Winning Touch to 6 and figure 3b shows the board for Winning Touch to 7. These boards are modifications of a commercially made game called The Winning Touch (Educational Fun Games 1962). This ready-made game involves all the factors from 1 to 12 and uses a much larger (\(12 \times 12\)) board than the boards in figure 3. A chart on the inside of the cover shows all one hundred forty-four products, and the instructions in the box advise the players to consult this chart when they are unsure of a product.

We took the chart out of the game because it motivates children not to learn products. When children can look up a product quickly, they are deprived of an opportunity to learn it through the exchange of viewpoints among the players. The second modification we made was to eliminate factors less than 3 and reduce the range of factors. For example, when we made the board for factors from 3 to 6, we called it Winning Touch to 6 (see fig. 3a). As the class became ready to move on to
more difficult factors, we made new boards and called them Winning Touch to 7 (see fig. 3b), and so on. We eliminated factors greater than 10 , as well as 10 , from the game.

Two or three people can play this game. Winning Touch to 6 uses sixteen tiles, on which are written the sixteen products \((9,12,15\), and so on) corresponding to the columns and rows. All the tiles are turned facedown and mixed well, and each player takes two tiles to begin the game. The players look at their two tiles without letting anyone else see them.

The first player chooses one of his or her tiles and places it in the square corresponding to the two factors. For example, 25 must be placed in the column labeled " 5 " that intersects the row labeled " 5 ." The first player then takes one tile from the facedown pile to have two tiles again. The players take turns placing one tile at a time on the board. To be played, a tile must share a complete side with a tile that is already on the board. Touching a corner is not enough. For example, if the first player has played the tile marked 25 , the only products that the second player can use are 20 and 30 .

If a player does not have a tile that can be played, he or she must miss a turn, take a tile from the facedown pile, and keep it in his or her collection. In other words, the player cannot play this tile during this turn. The person who plays all his or her tiles first is the winner. If a player puts a tile on an inappropriate square, the person who catches the error can take that turn, and the person who made the error must take the tile back.

When the students are fairly certain about most of the products, it is time to work for mastery and speed. The next section discusses Around the World, Multiplication War, and Arithmetiles.

\section*{Games Requiring Speed}

\section*{Around the World}

In this whole-class activity, the teacher shows a flash card and two children at a time compete to see who can give the product of two numbers faster. To begin, the whole class is seated except for the first child, who stands behind the second child to compete. The winner stands behind the third child, and these two wait for the teacher to show the next flash card. The child who wins stands behind the fourth child, and so on, until everyone has had a chance to compete. If the seated child beats the standing child, the two exchange places,
and the winner moves to the next person. A child who defeats many others and makes it to the end by moving from classmate to classmate is the champion who has gone "around the world."

Some teachers feel that Around the World benefits only students who already know most of the multiplication facts. When used skillfully, however, this game can motivate students to learn more combinations at home.

\section*{Multiplication War}

War is a simple game that uses regular playing cards. In the traditional game, the cards are first dealt to two players, who keep them in a stack, facedown, without looking at them. The two players simultaneously turn over the top cards of their respective stacks, and the player who has the greater number takes both cards. The winner of the game is the person who wins the most cards.

Multiplication War is a modification of War. We begin by using cards up to 5 and later add the 6 s , \(7 \mathrm{~s}, 8 \mathrm{~s}\), and 9 s gradually. After dealing the cards, the two players simultaneously turn over the top cards of their respective stacks, and the person who announces the correct product first wins both cards. The winner of the game is the player who collects the most cards. It is up to the two players to decide, before beginning the game, what happens in case of a tie.

\section*{Arithmetiles}

This is a modified version of a commercially made game called Arithmechips (Lang 1990). Arithmechips uses a board that has a grid of eighty-one \((9 \times 9)\) squares and one hundred fifty-six chips. Most of the chips have a multiplication problem on one side and the corresponding product on the other side. To begin the game, eighty chips are randomly placed in every square of the board except the one in the middle marked " X ," with the problem side up. The players win chips by jumping over one chip at a time, as in Checkers, reading aloud the problem on the chip they just jumped, stating the answer, and turning the chip over to verify the answer. If the answer is correct, the player can keep that chip.

We modified this game and called it "Arithmetiles." We made the following modifications:
- Eliminating factors of \(0,1,11\), and 12
- Introducing the requirement of speed
- Eliminating the possibility of "self-correction" by not writing a product on each chip

\section*{Figure 4}

\section*{Possible jumps in Arithmetiles}

(a) The eight possible jumps at the beginning of the game

(b) Possible moves involving one or more jumps
- Eliminating the requirement of having to read the problem aloud before stating a product
- Introducing levels of difficulty

Arithmetiles is a three-player game played with a \(9 \times 9\) grid that has an " \(X\) " in the middle. The game requires eighty problems because players must fill all the squares in the grid except one with tiles that have multiplication problems such as \(6 \times 7\) on them. But because there are only sixty-
four combinations of the factors \(2-9\), sixteen problems must appear on more than one tile. We use the following more difficult combinations on the sixteen tiles: \(6 \times 6,6 \times 7,6 \times 8,6 \times 9,7 \times 6,7 \times 7\), \(7 \times 8,7 \times 9,8 \times 6,8 \times 7,8 \times 8,8 \times 9,9 \times 6,9 \times 7\), \(9 \times 8\), and \(9 \times 9\).

The eighty tiles are placed, facedown, on all the squares except the one marked "X." The first player may play any one of the tiles marked in black in figure 4a and jump over a tile into the empty cell marked "X," vertically, horizontally, or diagonally. He or she quickly turns over the jumped tile and announces the product. If the other two players agree with the product and the speed with which the player announced it, the first player can keep the jumped tile. If the product is incorrect, the person who was first to correct it can keep the tile in question. If the other two players agree that the first player gave the answer too slowly, the jumped tile is returned to the grid and the turn passes to the next player.

The X cell is filled after the first play. The second player can choose any tile that he or she wishes to jump vertically, horizontally, or diagonally into the vacated cell. Play continues in this manner, as in Checkers. The person who collects the most tiles is the winner.

As figure 4b shows, making two or more jumps is possible. To make multiple jumps, a player must keep his or her hand on the tile while stating the first product and every subsequent product.

Teachers can make Arithmetiles more difficult by eliminating the sixteen easy products of \(2-5\) that appear in figure 1. In this version, we are left with only \(64-16=48\) combinations of factors. To have eighty problems, players must use most combinations twice and some combinations only once.

\section*{How We Used the Games}

Motivation to learn the multiplication tables must come from within the child. The teacher has much to do with the development of this motivation, however. Toward the end of the year, our students' desire to beat the teacher in Multiplication War and Arithmetiles inspired them to learn the tables. A similar motivation was to beat the "stars" in the class. When many students knew the tables rather well, the teacher began to challenge as many groups as possible every day. She briefly played with one group, left the students to continue playing by themselves, and went on to the next group, asking, "Who's going to beat me today?" Some
students made flash cards to practice at home, and a few were observed quizzing each other with flash cards on the bus during a field trip.

The children were motivated to learn the multiplication combinations because the games were fun and had a lot of variety. There was no coercion, timed tests, or the threat of a bad grade. Of course, the teacher explained how this knowledge would help in fourth grade, but students largely ignored such talk about next year. When the teacher played every day with small groups of children, they received a stronger message: that games are important enough for the teacher to play.

What about the games was fun to a third grader? Students made decisions every day about which game to play and with whom. Deciding whom to play with was especially a "big deal." Students who had mastered many of the combinations wanted to play against someone at the same level. Those who were not fluent wanted to play against someone at their level so that they still had a chance of winning. A difficult game such as Arithmetiles was not popular with the slower students. They tended to choose games such as Winning Touch, which did not penalize them for lack of speed.

The teacher's role was considerable in giving choices and maximizing learning. We deliberately introduced the more difficult factors one at a time. For example, when we introduced 6 as a multiplier, we played Winning Touch to 6 , Four-in-a-Row to 6, Multiplication War with cards only to 6, and Salute, also with cards to 6 . We played these games over a two-week period using factors up to 6 . After that, we focused on factors up to 7 for about a week, then factors up to 8 and 9 .

After a month, when the students had played all these games at four different levels of difficulty, the teacher began to announce on some days that everyone had to play a game with sevens or that everyone had to play Winning Touch at their "just right" level. She also introduced other games such as PrimePak (Conceptual Math Media 2000) and Tribulations (Kamii 1994). The children also benefited from whole-class discussions of strategies. In one of the discussions, for example, one child said that multiplying any number by 8 is easy if "you double it and double it and double it," meaning that \(8 \times 6\) can be done easily by doing \(2 \times 6=12\), \(2 \times 12=24\), and \(2 \times 24=48\).

As the year progressed, the students selected appropriate partners and games. Some stuck with the same game for a long time; they needed time to
develop comfort with certain combinations. Everyone learned the multiplication combinations and enjoyed doing so.

\section*{References}

Carpenter, Thomas P., Ellen Ansell, Megan L. Franke, Elizabeth Fennema, and Linda Weisbeck. "Models of Problem Solving: A Study of Kindergarten Children's Problem-Solving Processes." Journal for Research in Mathematics Education 24 (November 1993): 428-41.

Clark, Faye B., and Constance Kamii. "Identification of Multiplicative Thinking in Children in Grades 1-5." Journal for Research in Mathematics Education 27 (January 1996): 41-51.
Conceptual Math Media. PrimePak. San Francisco: Conceptual Math Media, 2000.
Educational Fun Games. The Winning Touch. Winnetka, Ill.: Educational Fun Games, 1962.
Kamii, Constance. Young Children Continue to Reinvent Arithmetic, 3rd Grade. New York: Teachers College Press, 1994.
- - -. Young Children Reinvent Arithmetic, 2nd ed. New York: Teachers College Press, 2000.
Lang, Audrey Clifford. Arithmechips. Creative Toys Ltd., 1990.

\section*{11}

\section*{PLAYING WITH NUMBERS}

\title{
Constance Kamii and Reinventing Arithmetic in Early Childhood Education
}

\author{
Barbara Beatty
}

Convinced that famed Swiss poychologist Jean Piaget, with whon she scudied in Geneva, was right abous children's cognitive developmest, Constance Kanai twok on the ask of reimenting how young children are taught arithmetic. In this chapter I examine bow S,anuii same to think thas almost everything about trabibional arithmetic teaching for preschool through Grude Three was wrong, and how she went on to co-suthor and write the books Plaget, Clithow, and Number (1976), Phyrinal Knowlelge in Presthool Efruation (1978), Goup Gaues in Eariy Ediuation (1980), Number in Prothael aud Kindegarien (1992), Yrung Chitiven Reimeur Arithneric (1985), Yung Chitden Conrinue to Rerinvent Arithmetic, 2ed
 which continue to influence early childhood education todry.

One of the leading figises in the movement for cosatructivis preschool education (the notion that young children construct concepts on their own, through play with materials and games, in carefully planised drumom settings with supportive, interactive teachers). Kanai has tirelessly promoted ber beliefs nationally and internationally. Her ideas were perceived as so radical, especially that of the harmfulness of directly teaching young childen algorithms, that she eventarlly lad to move from Chicago to Alabama, where ihe could find a few principals who would allow her to experiment in their schooks.

In the tradition of preschool educators sach as Friedrich Froebel, Patry Smith Hill, and Harriet Johnson, Karaii believed that children learned basic concepes as well as sephristicated knowledge through manipulation of phyical mutetials Througbout her long career, Kamiia argued that ploying with blocks and other prachool materiats and games was how children learned aridmetic in a deep and lasing wag. Ahead of the times, Kamiis worrics about the effectiveness of arithmetic teaching and learning are the subject of great consern currently, when
mathematical knowledge and weakneses in math teaching have been ideneified as one of the greatest problems in American edacation.

\section*{An International Childhood and Education}

Constance Kamiis radical ideas about how young children learn and should be taughe were influenced by her international background and edacation. Initially a Jpanese citizen, she was born in Geneva in 1931, where her father was working for the Interrationat Labor Orginization. Her parents, Kamii sags, had "very democratic ideas" She grew up speaking French as her fins langate, despite her pasents' eforts to teach her)apanese (Kamii, 2008). In 1939, when she was eight, her father took the family back to Japen, where Kamil lived during Woeld War II. She remembers the bombings every night. She remsembers the "at-ta-ta-cta-ta-ta" sound of machine guns during the dey and wondering "am I sell alive?" ater each attack. Educated in Jupanese schools, which daring this period were quite rgimenged (a pedagogial formality she laver rejected), Kanii looked back on her carly education in Genen as a tine when she was frec to explore and learn on her own.

Kamii's life was affected by American prejodice against the Japancle. Her mocher, who was Japanese-American, lost her citizenship after World Wha II, but then regained it, as other Japanese-Americara did. Not naturalized until hater in ber Kfe, Kamiis legal status as a Japanese pitizen had an impact on her career path. Kamii became interested in psychology and education when she came to the United Sates in the 1950s, where her mother and brother had moved. Kamil attended Pomona College in Californiz, and afier gradazing in 1955 with a majoe in sociologs, went on to the University of Michigan, which gave her a scholarship, to get a Master's degree in the School of Education. With a student visa that required ber to continoe studying, she stayed on at Michigan to get her doctorate in paychology and education.

At Michigan, Kamii met frllow student David Weikart who in 1961 belped her get a job as a half-time counselor in a junior high selool in the nearby \(Y\) psilanti Public Schook while she was still a graduate stadent. Weikart, who woald go on to become a world-famous peeschool researcher, had began working in Ypsilanti in 1957 as a paychologicat tester for developmentally deloped children and a year later became the director of special education. With Welkart, Kamis began focusing on the antecedents of learning problems (Kamii \& Weikart, 1963; Weikart, 2004).

\section*{Piagetian Preschools}

Kamilk ideas aboan arithmetic teaching and learning were grounded in research she did with Weikart at the now iconic Perry Preichool Project in Ypsilanti, Michigan. Kamia then broke with Weikart over how Pager's concepss should be implemented, and went on to develop ber own ideas aboot young children's learning.

Based on their experiences working with children with special needs, Kamin and Weikart wondered whether fomething might be done befove children entered school that would help prevent later problems.As a counselor, Kamsi noticed that the children getring kicked oat of class were from low-income backgroands, "troublemakers," and that the trouble started righe away, in kindesgarten. Kamii began doing research for her disertation that grve her more evidence that eraching what today would be called "at-risk children" early was very important. With a list firm the welfare departmers, she studied the child-rearing practices of African-American mochers living in deep poverty and surw how difficult it was for many of them to peovide their four-year-oldh with the kind of enriched edacational emironmets that young children from middle-class backgroands received.

With "compensacory edacation," the idea that schools could make up for the "cultural deprivation" of children from low-income backgroonds, in full sway and growing concerns aboat the effects of poverty and social inequality. Weikart and Kams were part of a new wave of researchers looking to peechool education to help the children of the poor (Heary, 2009, 2012; Bereiter \& Engelmann, 1966; Deatsch, 1967; Gray \& Klaus, 1965). Determined to prove that preschool education could raise poor childern's 1Q scoves and prevent school failure, Weikart convinced the \(\mathrm{Y}_{\text {psilanti }}\) chool district to let him begia an experimental perschool at the Perry Elementary School in 1962, which became the Perry Peescheol Project. Initially seen as a form of remedjal preschool imtervension, the project combined the ideology of spectal education with early chisidhood education, Enabled by the counry's forward-looking move of approving new funding for special education, Weikart realized thas public money could be spens on threeand four-ytar olds with special needs (Weikar, 2004).

When Kamii joined the project in 1964, she immediately became inmersed in prevchool, cempensatory, and special education-all major intaencel on ber later work. Sent into the Perry School nejghborhood in the summer to recruis lowincome African-American three-year-olds whove low IQ sest scoess, most in the 70-85 range, predicted they worald have trouble in school, Kamii helped assign the childres randomly for admission to the experimental perschool of a control group, to be followed longirudinally Wotking with Perry Preschool social woeker Noema Radin, Kamai realizod that many African-Americas mechen kving in difficult circumstances felt a strong need to protoct their children from harm, and thas"overprotected" and "shielded" them, compared to white midile-class mothers who wanted to expose their children to clallenges and were freer to do so. In articles she published with Radin, Kamii described social class differences in the child rearing syles of African-American mothers and argaed that social class, noe race, was the important variable, providing more evidence that African-American chillten from low-income backgrounds would benefit from being in a peeschool that would challenge them, in a safe emiromment (Radin \&e Kamii, 1965; Karnii \& Radin, 1967).

The Perry Preschool Project was designed to give three- and four-year-old at-risk African-American children the same kind of enriched perichool edacation
chat middle-class children got in nursery school. The children aetended three hours a dyy, five days week, for the length of the school year for two years, and got 90 minute weekly home vinies from their teachens, who had to be fully certified. Kamis did pre-sests and post-tests on the children. After one year, the StanfoedBinet IQ vest scores of the chuldres in the program went up, way up, an average of 15 points, which pot them into the normal range, a big deal in an era when most prychometrician still believed that IQ was an inberited, fixed characteratic (Whikart, 2004, 52-54).

After the second year, however, when the Perry Preachool childeen entered elementary school, their IQ test scores started to go down. Weikart wondered whecher the Perry Preschool curriculam raight be the problem. He had initially wanted a curriculam based on John Dewey's philosoplay of active learning combined with the Perry Preschool teachers' traiming in traditional nursery school education, but was disappointed that the teachers did not seem to be doing much planning. The children were given lots of tinse foe free play but were not getting any special academic help. During the first year of the program, after a lietle boy threw a chair across the soom, the teachers realized that they needed to be more proactive. They began to give more gaidance and verbal instructions, and talked to the children a lot, in what became known as a "verbal bombardment" approach (Weikart, 2004, 64-65).

The Perry Preshool curriculum evolved further when Weikart dicovered Piaget, while reading a review of J. McVicker Hunt's influential 1961 book totelligense and Experience, which summarixed Ptaget' theories and emphasized the role of the environment in child development and education (Hune, 1961). Weikart coneracted for the teachers to be given Piaget workshops and studied the work of Isacli preschool researcher Sara Smilanky, who focused on how teachers should akk divadvantaged childeen to plan what they were going to do in their play before they did it (Minkovitch, 1972; Smilanky, 1968). Weikart consulved with prychologiot Robert Hess of the University of Chicago, who whgested that the children should review their play after each session. These ideas came together in the Perry Preichools "plas-do-review" approach, in which children met with a teacher for about 10 to 15 minutes to plan their play, played for about 45 minates to an hoor, and then met with the teacher again to review what they karnod from their play (Weikart, 2004, 65-66).

When Kamia joined the Perry Preschool Project as a Researeh Asyociate in the second year of the program, she was dissatisfied with the curriculven, too. It still seemed like a tradirional nursery school. When she asked the teachers what it was good for, they said language and emotional development. What about the "three Rs?" Kamil asked, knowing that the children needed help with literacy to do well in school. So Kamii started reading curriculum books, and found "generalities," "Nice, sweer generalities" Kamas had heard about the Direct Instruction, academic skills-based preschool program that Carl Bereiter and Siegfried Engelmann had started at the University of Illinois, beat worried if chaldren were having trouble
learning to read in first grade it would be much harder for them when they were three (Bereiter \& Engelmamn, 1966).

When Norma Radin gove Kamil a copy of John Flavells (1963) The Developmental Pyydulory of Jean Piget, a scholarly exegesis on Pagert's theories, Kamii realized that she had found a "goldmine" that could be applied to early childhood edocution. She told Weikart that the Perry Prechool program curriculum needed to be cven more directly Plagetian. Using the language of compensatory education, Kamsi was convinced that "disadvanagred" children had "cognitive deficits," as she later wrote in an article with a Perry Preschool research assitant, because chey lad not gone through the Piagecian sages. They needed a curricutam that would help them progress through "the transition from senvorymotor intelligence to conceptual inscligence," so that wey could acpuire cograitive skills (5onquist \& Kamii, 1967).

To create a curriculum that focused on teaching specific Piagetion concepes, Kamii decided she needed to learn more, from Praget directly. In June of 1965, when she graduazed with her doctorate from Michigna, she gave berself the present of going back to Genev. She got to Geneva just in time to bear Phaget's last lecture of the semester. Meunerized, she could undentand Piaget's French easily While in Geneva, Kamie met Divid Elkind, who was finishing up a pestdoctocal fellowhip. Elkind became an infloential profesor of early childhood eduespion at the Eliot-Pearion School at Tafs University and would soce become one of the main "popularizers" of Piaget in the Unived Suates. She abo met many other Piaget researchers with wbom she would later collabonae, and was epecially impressed by the work of Pragere's close colleague and co-autior Barbel trhelder, who planned the experimenss that children were doing with objects, which became the basis for Pagot's increasingly complex theory of logicomathematical developenent (Beary. 2005, Hieuh, 1997).

When Kamil came back to the Perry Preschool project she sarted applying Payget's theories in earnest. With Norma Radin, the wrote a framewoek for how Piagetian stages and sub-stages could form the basis of a preschool curriculam, and then tranalated the framework into activities. She showed the teachers bow they could use regular nursery school activities to help children construct the Piagetian cencept of object permanence witt games in which the teachers hid objects, is Piaget had done with his children Jacqueline and Laurent. Kamiii demonstrated how to make a dack out of clay, to help children understand that the duck was a "symbol" that "ropresented" a real dack. She told the teachers to ask the children to put blocks in order from smatlest to largest, and to organize the doll corner so that the childfen would order the dishes and sore the doll clothes by size, to teach classification and seriation. She suggested aking the children to put a cup on the table and to jump over a rope, and what came nexs in the daily schedule of play-time, outdoor-time, and sarack-time, to teach spatio-temporal relationships. She showed how asking the childrea what would happen when they pushed their juice cup or a block tower hard could be used to teach
cause-and-effect relationshipt. She demonstated horw pointing out that when a cookje was broken into two pieces it was still the same cookie, coeld be used to teach conservation of quantiry. Almost everything in the numery school environment. Kamii argoed, could be manipulated to tarn it into an oppertunity for disadvantaged children to learn Piagetian concepts and further their cognitive developmerit (Kamil \& Radin, 1967; Sonquast \& Kamii, 1967),

Indicative of the kinds of tensions that erupt perennially in early childhood oducation over fine poants of pedagogn, relations between Kamis, the teichers, and Wiekart became strained. The teachers objected that they were being told what was theoretically correct and incorrect and what to do in their clasrooms. Since Kamii had not been a teacher, they thought that they knew move about the childern's individual needs and bow to plan for them than we did. Kama objected that Weikart was not applying Piaget directly enough. Weikart decided that be would trust the teachers' judgment and that the Perry Preschool curriculum would never be a "strictly Piagetian-based program," it would be a "cognitively eriented curriculum." Kamii reiigned from the Perry Preschool Project and left for a year of posidoctoral study in Geneva (Weikart, 1971; Weikart, 2004, 67).

Kamii spent 1966-67 in Geneva taking courses with Piaget and Inhelder at the University of Geneva, where Kamis became completely immerved in Piagetian theory. She also began, doing Piagetian experiments with children herself, Nor thinking aborit what she would do next, Kamis was contacted by her Perry Preschool colleagoe Norma Radin, who had received a federal grant to start another preschool program in the Ypsilasti Public Schools. As Carriculum Derector of the Ypsilanti Early Edacation Program for three years, Kamii continued developing Piagtian preschool activities. Her ideas about what to do radically changed. She read a 1964 article "Piager Rediscovered," by Eleanor Duckworth, a Canadian Praget telearcher who worild have a great impact on xience education for young children. After reading Duckworth, Kamii began worrying about trying to teach Piagetian concepes too directly. Duckwoeth wid nos to teach conservation by having children pour water back and forth from different sized beakers and arking quegions or pointing ous that the amount of water had sot changed, let the children gradually discover it themselves. Piaget did not think that "intensive training of specific asks" was useful, Duckworth wrote, because it did not affect childern's general understanding (Duckworth, 1964).

Duckworth, and especially Hermina Sinclair, a Dutch Piagetian from Geneva who came to consult in Kamii's Ypsilanti preschool program every year, comvinced Kamii that her earler ideas were wrong. Kamsir realized that she had been doing what beginners did, trying to teach Pagetian tasis instead of understanding the larger processes of development. Sinclair told Kamai that teaching the task, hiding objects, and pouring of water back and forth, was like taking soil samples, fertilizing one sample, and sticking it back, insead of "fertilizing the wbole Geld" (Kamii, 2006) As Kamii put it, it had become:
control group. Although the children's IQ test scores did not go back up, in thied grade their achievement test scoees and teacher rating began to rise. In 1984, when they were 19,59 percent of the former Perry Preschool children were employed, compared to only 32 percent of the group that bad not attended preschool; 67 percent had graduated from high school or its equivalent compared to 49 percent; 38 perceht compared to 21 percent had goten college or vocttional training only 31 percent compared to 51 percent had been arrested or deazined; and only 16 percent compared to 28 percent had been assigned to special education. The Perry Preschool groap also had higher earning and only about half as many teenage pregrancies (Berrueta-Clement, et al., 1984). Weikart and his associates calculatod that every dollar invested in the Perry Preschool gained \(\$ 7.01\), mostly in saving on special edacation, prisons, and other condly public servies. Although criticised by some satisticians, the figures circulated rapidly. Politiciars listened. The Perry Preschool Project, with itt Piaget-inflaenced, cognitively-oriented carriculum that Kamil helped design, became a powerful model for why the United States needed to increase sapport for preschool education (Berrvea-Clement et al, 1984; Schweinhart et al., 2005).

\section*{Testing Piaget}

In the late 1960s and early 1970s, Kamii and other Piagetians mounted a challenge to behaviorism and the estire edifice of IQ teexing that had dominated American peychology since the days of Lewis Terman at the beginning of the twentieth centary. By the late 1960s, Piaget was becoening well-known in the United States, and Kamii was betoening known as a Piaget researcher. David Elkinds article "Giant in the Nursery - Jean Piaget," made a splash in The Now York Times Sanday magazine (Elkind, 1968). Test companies took notice. In 1969 , the California Test Bureas, a division of MoGraw-Hill, coevened a conference to see if developmental and edacational prychologists coald develop a scandardiaed Phagetian test, an Ondinal Scales of Cognitive Developonent, based on the kinds of problems Piaget gave children, to measure developmental and intellectual maturity. Piaget and Inhelder were invited, at were many influential American poychologists, poychometricians, and early childhood educators, including Milie Almy of Columbia University Teachers College, whose 1966 book Yowng Chüdren\} Thinbigg introduced many preschool educators to Piaget, and Selma Greenberg, who directed the Head Surt program for African American Gumilies in the Missssippi Delta, and Kamii (Green et al., 1971).

Held at the Monterey Iratitute for Poreign Studies, the conference began with an opening address by Piaget, in which he stated that he was not an expert on ordinal scales, a succession of tasks or questions derigned to messure an individuals performance compased to that of subjects in the group upon which the test was based. Nor was he sure, Piaget said throagh his translator Syivia Opper, that ontinal scales really measured the abrities they parported to measure (Piaget,
1971). The second dry of che conference, held at a hotel in Carmel, began with a paper by David Elkind comparing similarities and differences between Piaget's views on intelligence with those of prychometricias who used IQ testing.

When Kamai found out that Siegfried Engelmann, who, in the easly 19603, with Carl Bereiter, had started a preschool for educationally diaadvantaged children, hocsed at the University of Illinois at Urbana-Champaign, was going to give a paper, she asked to give a comment on ith. Antiahetical to everything Piaget, and Kamii, atood for, Beceiterl and Engelmann's program, which developed into what is now known as Direct Instraction, was based on behaviorist methods for teaching academic content in language, reading, and arichmetic in short, tightlyscripted, adult-centered lessoes. In a lesson on the concepe of wapons, for instance, the teacher abows the children a picture of a rifle, praises them if they say it is a gan, eqpecially if they say it in a full sentence in standand English, and has the class repeat the rule and clap riyythmically sying "If you use it to hurt somebody, then it's a weapon." "You use it to POW POW = hart somebody" the teacher syys, and after a series of ting-song question and anawern, the preschoolers have supposedly been taught the concept of a weapon, in a quick, two-minute "teaching segment" (Bereiter \& Engelmunn, 1966, 105-110).

Knowing that Engelmann would claim that he could teach Piagetian concepos đirectly, not through play, Kamii asked him if she could come to his preschool to test the children. To her sarprise, he said yes, Kamii designed some clever experjmerts that she thought would reveal that Engelmann's preschool children did not really undersuand physical knowiedge about how the woeld worked, which Piaget said had to be leamed through play with objects. So she got a big cake of Ivory soap that would float and a small bar of hard soap that would sink and some other objecte, and designed questions to elicit the children's predictions and explanations.

When Kamii and her \(\mathrm{Y}_{\text {pillanti E Early Education Project assistant Louise }}\) Derman arrived at Engelmann's preschool, they sooe realized that Engelmann had taught the children basic rules, but that the children could not explain the rules. When asked whether a block would float, for instance, one litrle boy, Carl, said yes, "Because it is wood." When told it was hewy and allowed to foel it, Carl changed his mind, aed put it in a pile of things that he thoughe would sink, insead of explaining the rule, as a child who undersood the concept would. The pieces of soap were eipecally puraling to the children. When they saw that the bigger piece of lvory soap floated they were surprised and said thing like "That' nos what it's sapposed to da" One litule girl, Ann, ssid that both pieces of soap would sink, because they both were soap (Kamii \& Derman, 1971, 130). Kamil and Derman concluded that their texting proved that childrea had to build up sensorimotor knowlodge slowi), and that being in a preschool that let them do chis was how it happened.

When Engelmaan grve his paper at the conference, which Kamii had sot seen beforehand, Engelmann critiqued Piaget for lacking as explanation for how
children learned. Piaget's theory was nothing "more than a set of accarate descriptions about the performance of chaildren at different ages," Engelmann said. It might as well have been based on "learning-producing" rays from ouber space. Piaget did not provide a theory that "clearly implies instruction, lack of instruction, or evaluation of instruction" (Engelmann, 1971, 120-121).

Just as Kamii had expected, Engelmann claimed that he had succesafully taught Piagetian conservation tasks directhy through short lectures. Engelmann had found, he said, that kindergarten children could learn the principle of conservation of çantity without playing with objects, withorat poraring water back and forth, seeing it poared, or even secing a diagram of it, "after 54 minutes of instructien, distributed over a 5-day period" (Engelmann, 1971. 126). It was simple to teach what Piaget callod development, Engelmiann claimed, children "are taught."

In the resporse she gave after Engelmanns presentation at the conference, Kamii disagreod. Young children could not Iearn logic "withoat taking into account the natural developmental sequence that Piaget described." In fact, Kamii argued, the verbal rules Englemana had taught the children made it larder becaase they blocked the children's "intellectual contact" from coming to grips with the real objecs. Engelmann had said that the Piagetian model was an ineflicient way to teach. On the contrary Kamii said, imposing rules could mask children's matliple explanations, but not eliminate their intuition, sonse of which were incorrect. The Piagetian approach to teaching. Kamilis said, was not to leave children alone, but to provide siruations and materials theough which children could build up knowledge interactively and thes progress to the neet stage of development (Kamii \& Derman, 1971,142, 143, 145, 146).

The confroncation between Kamii and Engelmann was a sandote. Engelmann said that he knew that his imatructional methods needed to be improved. The problem, he argued, was that he had not taught a rule that would allow children to gereralixe sufficiently, so "faulty instruction" was a problem. Engelmana also gave a more basic answer, however, that he thought explained away some of Kamiils remak. The reason the liuke giel Ann had had so mach trouble with the toaps was "appallingly simple" She had been absent two of the drys when compersating for changes in recungular objects had been caught (Engelmann, 1971, 147, 126)

Kamiil had defended Piagetianism, at a conference Piaget himself had atended. While she had not cominced Engelmann that he was wrong she got affirmation from Piaget's co-revearcher Barbel Inhehder that Kamii had made some good points (Kannii, 2012).Engelmann continued to work on his behaviorist preschool methods, bat behaviorimen was on the wane. Cognitive-developmental models were rapidly becoming the dominans approach in preschool education.

\section*{Back to Geneva}

Knowing that she needed to learn more about Piagetian theors, so that she could devign betver preschool curricula, in 1970 Kamia left Ypsilanti for good and went

\section*{248 Bartara Beatty}
back so Geneva for another postdoctoral year. This time she had been invited to do research at Piaget's International Center foe Genetic Epistemology, a high bonor. Each spring, Piager would announce what the topic would be for the next year. Over the summer, research fellows dreamed up an experiment, a problem selated to Plageti announced topic. All rummer the research fellows, Piaget's "slaves" as Kamia called them, of whom she was one, played with the apparatuses they were building, worrying if Piager would approve them in the fall.

Kamii designed a problem with a balance beam, in which children were to peedike what would happen when they tried putting small metal washers at different points on the balance beam and explain whor Kamii brought her balance beam apparanus to the first session of the year, the fint Monday in October, winen research fellows had to present their plans. She was anxious. To her relief, Piaget, the Patson, as his students called him, approved of her experiment. Kamä took her apparatus to schools in Genevz, a researcher's parative because Piaget had a standing arrangement that his researchers could simply walk into a school co ary affernoos and announce to a teacher that they were going to take children out of the clasroom to study them, a blenket permision that Kanil would laver find very haed to get.

Strong believers in collaboration, Piager and Inhelder, who collaborated on everything themselves, imasted that resesthens work in pairs, a habit Kamii continued in much of ber own research. Kamai's partner for most of the yars she kept coming back to Geneva was Sylvia Purras. To get a feel for the range of developenent, Paget required researchets to start by interviewing a four-year-old, a six-year-old, and a ten-year-old, and then fill in moee children of defferent ages to test the theory at different levels. Kamii and Parat ipent hours together talking aboat their research problems, did a year of one-day-a-week observations, and were critiqued by Piaget and other members of the semisar, weekly. At the end of the year there was a research rymposium to which Plaget invited resowned senior researchers from around the world, at which the fellows poesented cheir findings.

Like that of other of Plaget' student, Kamiì research contributed directly and indirectly to Piaget! and Inhelder's own work. At the end of the year, Kamil and her partuer would tarn in about a 15 -page report on their research, which Piaget and Inhelder would take up to their chalet in the mountains, along with the reports of the other "slaves" Kamil never knew where or if piecel of her research might uern up is Piagetì and Inhelder's books. Kams and the other fellows were credited in references or acknowledgements, but the Patron acted as if he owned their work. Sometimes Kamii would barely recognize ber research when she saw it later, in part because Piaget made up cheosetical explanstions writen in loag. dense, complicsted sentences. Eventually, usalliy after about three years, Kamii's reseasch would appear in some form in the Avehives de Pyyhologic, the joursal begun at the University of Geseva in 1902 . Soon Kamii was akked to take charge of a reiearch seminar on Piagetian methods herself, which she alternated teaching in the spring and fill sa the Uaiversity of Geneva for twelve years, with Elcanor

Duckworth, anocher Piaget disciple, during which time Kamii became moee and moer convinced that Piagets ideas were scientificily correct.

\section*{Playing with Numbers, Objects, and Games}

From the mid-1970s to 1980, while Kamil was going back and forth from Geneva, she collaborated with Rheta DeVries, another Piagetian paychologis and educator, to weite three very inffuential books that belped make Kannii widely known in early childhood edacation. DeVries, who Kamii had met at one of the many Piaget conferences held in the United Seates throughoat the 1970 h, helped Kamii get a job at the University of Ilinois at Chicago Circle. An elementary school teacher, DeVries had complesed her doctocate in prychology it the University of Chicago under Lawrence Kohlberg, who became Gamous for applying Piaget's stage theory to moral development (DeVries \& Kollberg, 1987). As Kamit and DeVries heard stories from their Masters' stadents aboat terrible arithmetic teaching Kamia and DeVries became corrvinced of the need for a book on Piagetian approaches to arithmetic for young children. Kamil knew that Piaget's theories were especially strong in the area of logico-mathematical knowledge, and that teaching reading was a crownded field, so she decided vo focus on arithmetic. Kamii and De Vries had plenty of time to design Piagetian arithmetic teaching activicies because Kamii lived in De Vriesl apartment building is the Hyde Park section of the ciry. They tented their ideas is child eare centers in Chicago, Evanston, and at the University of [llinois, Chicago Circle Preschool.

In tbeir 1976 book Plaget, Children, and Namber, Kamii and DeVries asserted that everything about how young children were traditionally taught rumbers was wrong. The names of numerals, number of things in a group, and how to couns wese arbitrary "number facts," the seaching of which was useless, even potentially harmful. It was rote memborization of arbitrary social knowledge, withour real undersanding. Numbers are not "oat there" in numbers of objeces. Childern have to play with objects and order and group them mentally, Kamii and DeVries thought, and then see that "eightness" is a relationship. To understand eight or any other number, yoang childern have to construct a concept of eight, and no amount of counting practice, or drill will help. Theow out all of"one, two, three," Kamin and DeVries, sald, childeen have to play with objects to undentand numbers, before they can go on to more complicated arithmetic (Kamii \& DeVries, 1976, 7-10).

Teachers shouid not jast leave children alone, however, Kamii and DeVries said, but racher teachers should help children comarrace number concepes by thoughtfatly uing familiar objects and asking good goestions. Arithmetic learning happened all of the time, not just during "math timse." At snack time teachers should ask "Do we have enough cups for everyone?" or "Do we have too many cups?" Kamii and DeVries also questioned the asefulness of many existing math "manipalatives," as ipecially deigned objects for children to aie to learn
arithmetic are called. Cuajenaire rods, the coloced wooden rod that come in multiples by length, Montessoris graduased materias, and most other math manipulatives did not heip, Kamis and DeVries said, because young chaldren undersuand number as "one of" an object, not that a longer object means more, or that two is included within a rod that is twice as long.

It was especially important for children to check their own answers, Kamii and DeVries aggued. Teachers shöld not give chaidren the right answer of tell them that they are wrong, a very controversial notion in a field where getting the right answer had long been the goal. Instead, teachen should try to figure out how children themselves are thinking. Did the child get the right answer by accident? Did the child conseruct how to do it logically, but make a compurational erros? Gerting the wrong answer for the right reason was better than getting the right answer for the wrong reason, Kamil and DeVries stated, flying in the face of how arithmetic was customarily taught (Kamii \& DeVries, 1976, 11-26).

Paget, Chuldnen, and Nwabber was an immediase success, even though it almost did not get publashed. When Kamii and DeVries sent the manascript to the National Association for the Education of Young Children, NAEYC sat on it for a long time. Kamii thinks this was because it was move theoeetical than books NAEYC usually pablished. When it finally came out, Kamil became famoas in the earfy childhood education commanity and began giving wila to huge audiences at preschool coeferences. Despite the book's popularity. Kamari was diesatisfied. In the 1982 edition that she wrote on ber own without DeVries, to "coorrect the erroes and inadequacies" in the original volume, Kamii thanked Hermina Sinclair, and especially Eleanor Duckworth, for helping her see that teachers should not be explicitly teaching Piagetian tasks. In the recond edition "teaching" mumbers is in quotation marks, because "number is not directly teachable," Kamii says. "How predsely the child constructs number is still a mystery," Kamnin wrote, jost as how childera learn language is a mysery (Kamil, 1962, 21, 25; Lascarides * Hinitz, 2000, 134).

Essential to Kamils approach and part of what made it so original was her emphasis on children's autonomy. Kamsi had had an epiphany. Autonomy was the aim of education, not development, an issue about which she and DeVries disagreed. Mary in the early chaldhood edacation community tav intellectual development as the goal. Kamii did not, and appended a keynote address she had given on astonomy to her 1982 Number in Preachool and Kindergeter. Like most Americans, Kamii had been deeply infloenced by the events of the late 1960 s and 1970). Martin Luther King Jr. was one of her bigges heroes, along with Copernicuas. She praised former Attorney General Elliot Richardson for acting autonomously by defying his boss Richard Nixon in 1973 by refusing to fire Special Prosecutor Archibald Cox who was investigating the Watergate scandal. Plaget's theory of monal development explained why some people were able to act autonomously Kami ingued. Piaget showed how children could construct a sense of autonomous moraliry, through interactions with other children and
adals, when children were given the opportunity to make deciaions and experience the comequences of their decivions (Kama, 1981).

Following their book on number, Kamii and DeVries went on to write about physical knowledge concepes aboat the way the phyical world works that chaldren construct from playing with objects and observing reactions and tranaformations, asother type of development ehat Piaget and Inhelder stodied.As Kamii and DeVries explained in their 1978 book, Pinssios' Knowledge in Preschool Education, originally publahed by Prentice-Hall, not NAEYC, the Plagetan approach avoided the "verbalism" of traditional science edvecation. In a traditional textbook lesson ot crysuls, for impance, the teacher shows children crystals and socks; explains what they ane; gives children salt, bluing, water, and ammonia; and in one bour crystals begin to form. As with their book on number, Kamil learned from observing real teachers and children how chillten could learn science more effocsively. Kamisi and DeVries encouraged teachers so let childeen invent experiments on their cown, add differess things together and peedict what might happen, so that the children would be sarprised by some of the rewles, the way real sciencises would be (Kamii \& DeVries, 1983, 3-4),

As with understanding of the properties of number, understanding physical knowledge did noe develop by leaving children alone, Kamii and DeVries stated. Qucting from The Heving of Wondegiel Ideas by Eleanor Dackworth, Kamii and DeVries argaed that content was important, children had to know enough about fomething to be able to think of other things to do and adk more complicated questions. But, harking back to Engelmann's attempts to directly teach floating and sinking. Kamii and DeVries said that children made "abousd statements precisely because" they "tried to sire the specific bits of verbal knowiedge that had been stuffed into" their heads. Inseread, for example, teachers could give childeen boards and rollers to sit on and stand on to experience different kinds of movement relationships (an idea Kamii had gotten from a book on the history of engineering that described how rollers and boards were used to build the pyramid); give children balls to aim at different block towers to observe ricocheting and other effects; baild inclines from blocks; set up penduluma and provide for water play (Kamis \& DeVries, 1983, 21, 31, 311).

In their third book togecher, Group Games in Eanty Edvation (1980), Kanaii and DeVries emphasized what was becoming known as "comitructivism," the notion that children conatructed knowledge themselves through interactions with the environment, peers, and teachers, especially through play, In a forewoed so the book, Piaget wroce that play was "a particularly powerfal form of activity that fosters the social life and conseructive activity of the child," and noeed that Kamit and DeVries had been inspired by his famous stady of children playing marbles from his 1932 book The Mosal Developement of the Child. Filled with long qucentions from Pagget's writings, Growp Ganes in Ean'y Edwotion, also contained a single-auchored appendix by Kamii in which she explained why Piager's constructivism was scientifically-derived (Kamii, 1980). Although not a panacea, play,

FIGURE 11.1 Jean Piaget observing Constance Kamii facilitate young children's play with manipulatives at the Perry Elementary School,Ypsilanti, Michigan, October 1967. (Personal collection of Constance Kamii)

Kamii said, was the best way for children to learn, construct knowledge, and become morally autonomous thinkers, and games were a great way for children to do this. The book also contained a photograph taken when Piaget visited Kamii in Chicago while he was on a trip to receive an honorary degree from the University of Michigan.

Kamii and DeVries said that they wrote Group Games in Early Education in part because they thought that the pendulum had swung "too far from group instruction to overly individualized instruction." They also thought that the educational benefits of playing games were undervalued. Many teachers and principals were afraid of using group games because "parents complain when children play games and do not bring worksheets home," Kamii and DeVries said. Learning from games was an "alternative to traditional, academic methods," and could be useful with older children, as well, although "instruction" became "increasingly necessary and desirable as the child grows older, but older students would learn more if they had constructed knowledge when they were young" (Kamii \& DeVries, 1980, xii, 33).

Playing games raised the thorny issue of competition, which Kamii tackled head on in a single-authored chapter. She knew that most preschool teachers objected to group games because they were competitive, because they thought there was "already too much competition in our society" and in the upper grades,
because children who lost goc upret, and because childres should sompete with themaclver, not with each other. Kamii said that teachers could help chaldren see that they were comparing performances, not competing for a "thing," and that teachers could handle competition more casually, by saying that it was OK to lose, 50 that childeen did not become obnoociously boastul. As eo competition in the woeld, the games she and DeVries were suggesting, Kamili wrote, were different because the children decided and agreed on the rules, with help from the teacher, and did not get rewards or prizes. As to feeling bodly about losing, Kamii said that teachers abould scress that it was just a game, that the loser wa noe "inferior, incompetent, or worthy of rejection," and not force children who did not want to play. Teachers should help children develop into "fair players" who coald "govern themselves" and learn how to "judge their own success," Preschool was a good time to begin this process creatively through games such as block races, tag, masbles, pin the ail on the donkey, card games, and boand games (Kamii \& DeVries, 1980, 189, 197).

Enormously saccessful, the books Kami and DeVries wrote on sumber, plyyical knowledge, and group games became classics in early childhood education both nationally and internationally. With Japanese, Kotean, Spanish, Portugaese, and Chinese editions, Kamis work did mach to extend Magecian ideas throughout the world.

\section*{Reinventing Arithmetic}

Afrer revolationizing the way mary preschool teachers thought about how young children learned about numbers, physical science, and games, Kamia mounted an assault on how all of arichmetic should be aughe from perschool to thind grade. When, in the early 1980s, Kamiii moved up into the primary grades- the savatuns sanctorum of "the barics," the chree "Rs," the bedrock of American educacion-she encountered more reistance. Her ideas chailenged assumptions that had been in place since the days of one-room schoolhouses in the 1800 s . This was territory into which other developmental prychologias had trod, as well, with lietie lasting impoct. In the early 1900s, the father of deveiopmental psychology G. Stanley Hall asd peogressive educatoe John Dewey had tried to make ariblametic instruction more natural and practical, with litie saccess in the public schools, where the texts and tesaing of educational psychologist Edwasd L. Thorndike raled the day (Beatty, 2006; Cline, 1982; Finkelvtein, 1989; Monroe, 1917). The Thomaike Arithwetics laid out how arithmetic should be directiy and efficiently taughe chrough praceice, word problems, and drills, and bow children's learning should be scientifically measured by school achievement tests (Beatty, 2006; Cliffond, 1984; Thorndike,1917, 1922), As Kame soon discovered, this behwior int approach, which dominated elementary edocation in the United States, presented a formidable obstacle to ber research.

In a sequence of four books and three videos published by Teachers College Press between 1984 and 2000 , Kamii laid out a completely new approach to
teaching arithmetic, in which children constructed arithmetical concepts themselves with the help of their teachers. Although similar in some ways to the "new math" of the 1960 s , the revolation in math teaching designed by college math profrisors, Kamas's methods were baied on Piaget! theory of cognitive developenent and collaboration with elementary school teachers. She proposed the radically progressive idea that beachers and parents and schools should truat that children had the ability to learn math throagh normal, universal processes of development, and that if allowed to do so, they would be confident aboat their abilities and not suffer from math anxiety or phobiz. "Every normal student is capable of good mathematical reasoning." Kamii q̧uoted from Plaget, "if attention is directed to activities of his interest, and if by this method the emotional inhibisiess that too often give him a feeling of inferiosity in lessons in this area are removed" (Piaget, 1973, 98-99. Kamii, 2000, xii).

Kamil called hez approach "reimenting aridhmetic," a term she got from Eleanor Duakworth, a notion Kamui based on her own rescanch with children in Geneva. Kamï's new line of research began with one teacher, Georgia DeClark, the only firs grade teacher in Kamiil Introduction to Praget course at the University of Illinois, whom Kamii credited as the second authoe of the 1985 edition of Young Childen Revinomet Aviomenti, Comtance Kamil and her siter Mieko Kamia from Wheelock College in Boston also collaborated on research on how children learsed single digit and double digit addaion, which sormed part of the basis for Kamiil new work. The Kamis said that children shoald not memorize "addition facts" such as \(3+5=8\) or be taught to "carry" from the ones colamn to the tens column to the hundreds because this was not the way childrea matarally did addition. On their own, young children did single digit addition up so ven, two worn, either by "counting on" by searting at three and then siying "four, five, six, seven, eight," or by "counting all," cownting up to three fingers and then going on to count five more, and then going back to coant all 8 fingers, thus combining the group of three and the group of Give they had jast counted. For double digit addition for sums over 10 , Kamii and her sister found that some children rounded up to ten first, as many modern arithmetic trests now recommend (Kamin, 1985, 68; Kamii, 2000, 84). However children approwched addition problems, Kamii and her siver argaed, the children came up with strategies on their own.
'Teachers' veliance on wocksheets was one of the stumbling blocks Kamil had to overcome. Georgia DeClark told Kamai that she had been teaching addition successfully to the children in her first grade class using traditional methodsmemsoriaation of "addition facts," "carrying" drills, and workshects-and that this was the way the curriculum she had to cover was supposed to be taught. When Kames visited DeClarks clasroom she asked DeClark if she would be willing to try teaching arithmetic for a year using only activities from the children's daily life and games, no direct isstruction, no workheets, no school math series. DeClark said that she could not promise to make sach a "drastic change," bat that she
would "give it a try" and see bow far she could go. Kamii said that DeClark should rely on her own judgment, of course, and do what she thoughe was necessary if she did not think that Kamiils Piagetian methods were working Kanili peomised to vinit DeClark's clasroom every week and belp her all the way (Kamii, 1985, xiii; DeClark, 1985, 195).

DeClark worried that her chaildren would not learn the basic arithmetic they needed to know with Kamir's methods. DeClark was aho weorried about how to corrince her principal, what she would say to other teachers, and what she would tell partnts. DeClark's principal said she could go ahead as long as she reached the achievement goals set by the standard curriculum by the end of the year, the other teachers were busy worrying abous their own classes. DeClark explained the new approach to the parents, a lirtle more confidently than she actually felk, and told them to play games at home with their children. They did not challenge her. So at the beginning of the 1980-81 school year, DeClark started using the group games Kamil suggened:Tic Tac Toe, Concentration, Card Dominoes, Whr, Piggy Bank, Double War, Suberaction Lotto, Sorry, Dorable Parchcesi, and othens. The children loved the games. They focused on them more intently than they hed on workshects and made docisiont autonemousijg just as Kams had hoped.

DeClark was still worried, however. On October 29th she gave the children an addition workaheet. They did well on it, juue as Kamil had sold her they would. DeClark gave out four workshects in all, and found to her relief that her children could do paper and pencil addition problems on woeksheecs just fine. Kamil told DeClark that she was probably the only first grade teacher in a public school in America who gave out only four worksheets that year (DeClark, 1985, 195-227).

When Kamai tested DeClarks children on simgle-digh arichmetic problems, she found that they did as weill as a control group of children the same age in ancther first grade class who had studied arithmetic the traditional way. About the same number in both groups could do doable-digit addition pooblems. DeClark! children had taaght themselves arithmetic, by playing games, without lessons, workaheets, flash cards, of adules panaing them. They could explain how they got their answers. The children in the control group could not. Kamii and DeClark repeated the experiment apain the next year with the same revalts (Kamii, 1985, 231-246).

Kamis felt vindicated. She had proved that firs graders could reimvens arithmetic on their own. Now she wanted to see if second graders could do it, too. She needed two teachers, one each in firs and second grade who were willing to we Piagetian methods. She could not stay as DeClark's school, however, because the principal said he reshaffled the students each year and would not keep DeClark's class together. When Kamii tried to find another princigal she encountered resistance. Teachers from her graduate course were eager to try the new methods, but when Kamin talked to their principals, the principals asked one question; Can you promise good achievement test scores? Kamii explained her approach and offered to show her data. None of the principals looked at the dan. When Kamii honevly
said that she could not absolutely guarantee good test scores, all of the principals said "No." Some asked her if she knew that thrir jobs depended on getting good test scoces. Not one principal in the Chicago area agreed to lee Kamai try her arichmetic methods in his school (Kamii, 1989, vii),

Stymied, Kamii was determined to prove that the preschool arithmetic methods based on Piaget and play that she had developed would wock with second graders. She was receptive when she met Milly Cowles, the Dean of the School of Education at the Univentify of Alabama in Birmingham, who told Kamii that public schools in the South were much more open to university-based experimenters than public schoob in the North. Frustrated in Chicago, Kamin visited Birmingham and moved there in January of 1984, so that she could continue her research. By September, she had a school, the Hall-Kent School in Homewood, in an integrated, moderate-income Birmingham subuarb, a supportive school superintendent, Robert Bumpus, and an enthusiastic principal, Gene Burgeas, who was so excibed about Kamiils vescarch that he wanted her to try it at all grade levels in his school. Burgess thought that the math program he was uting was not working, knew about Piaget's work, and never asked Kamii about test scores. Kamii had never met a principal like this. Although the teachers were skeptical at first, Kamii visited their classes and met with them ofven. Eventually ten teachers signed on, four in kindergarten and three each in first grade and second grade (Kamin, 1989, vï-vii).

Kamil knew how different her approach was from the goals and mechods of traditional math texts for second grade. The Harcourt, Brace, Jovanovich text that the Homewood teachers were using required that number facts, addition of whole aumbers, stbtraction of whole numbers, multiphication of whole numbers, division of whole mambers, fractions, measurement, time, money, geometry graphing, probabiliry, statistics, and problem solving be taught directly and incrementally, with chiddren writing out correct answers. Kamï had to peove that second graders could learn these concepts and computational skills through constactivist, playbased methods instead (Abbott \& Wells, 1985, 26; Kamii, 1989, 3, 45, 54).

Rather than beginning with specific objectives, as traditional arithmetic programs did, Kamii derived her objectives from carefully observing the children, in the tradition of progressive preschool education going back to the manery school movement of the 1920 s, in which Piaget was imbued from his original work at the nursery school at the Inatitut Jean-jacques Rousseau (Beacty, 2009), In her 1989 book Mung Childert Contiruet to Reiment Aridhmetic, 2nd Gesde, written with teacher Linda Joseph, Kamii statod that she eventually arrived at five objectives: addition of one-digit numbers, place value and addition of two-digit nambers, vubtraction of one-and two-digit numbers, multiplication, and division. Instead of formally teaching place value first as arithmeeic sexs recommend, Kamii and the teachers let the childrea learn it as they did addition (Kamii, 1989, 63).

From her observations, Kamii found thar the traditional order of arithmetic teaching-addivion,subtraction, mulkiplication, and division-was not how children
reimented it. Psychologisss from the beginning of the twentieth cerrury had been debating the order of arithumetic teaching, In 1911, G. Sunley Hall said that arithmetic learning, what he called "arithenogenesis", was biologically programmed into young children, and sbould be left wo develop namally, somewhat as Kamia argaed (Beatry, 2006; Hall, 1911). In fact, like Hall, in a 1987 article in Aridhmetic Teaker, Kamii said that children were "born with a natual ablity to ehink and to construct logicomathematical knowiedge" (Kamii, 1987). John Dewey argued that children learned arithusetic by conatructing concepss throagh evaryday activities, anocher \({ }^{\text {approsch Kamii used (Beaty, 2006, Dewes, 1895). Kamii found that puberacticen was }}\) maxh harker for children than mukliplication and agrued that makkiplication, not wobtraction, should come after addition.

Like Plagee, Jerome Bruner, Eleanoe Duckworth, and ccher progresives in the science and math carriculum reform movement for older childres in the 1960 , Kamil thoaght that teachers should let children arrive at answers themselves, not correct children when they were wrong, and encoarage children to discus how they got their answers. As with first graders, Kamii suggested that Lind Joseph's second graders learn throagh games and everydry activitis, with the addition of teacher-initiated discussions of computation and story problems. Joseph would pat \(18+13\) on the board, alk the children what they thought was a good way to solve it, write their suggestions on the board, and histen to the chaldreni) reasons for agreeing or disagreeing with each other's anwers. Sbe would not tell them the right answer or correct wrong answers. When some chalden got the right answer, other childen would agree or diagree, and later, sometimes four or seven months liter, would teliment double colums addition on cheir own and be able to say why the rigàt answer was right (Kamii, 1989, 75-79).

Teachers had to be fruarated with tradicional methods to be willing to give Kamiil' radical approach a try. As fist, like Georgia DeClark, Linda Joseph was not convinced. When Kamii visted her classoom, she told Joseph that her children were "not thinking." Joveph had thoughr this hessel sometimes and decided to try Kamii's approach. Joveph stuck with Kamei's Píagetian, play-based methods with the same group of children for four yeans. After surviving the firs year without workbooks and seeing that the children were doing well on teets, Joseph was convinced that games and disccussions were becter than drill sheets. By the thind and fourth yrar, Joseph was akking her sadenss what they would like to work on, telling time or subcraction, or something else, and letting them choose. She had gone through a "metamorphotis" as a teacher, she said (Joseph, 1989, 151-156).

As in Chicago, Kamis was able to prove that her child-centered, constructivit appooach worked, based on the results of standardized tessa. When Kamia compared the performance oa the Stanford Achievemens Tert of second graders at the Hall-Kent School, who had leamed through ber methodk, to comparable second grades in another school who had not, the found that their standardized test scores were about the same, but when asked to explain their answers the

\section*{258 Barbara Beatty}

Hall-Kent children did nowh better. The mean Stanford Achivement Test Total Mathiematios Score in percentiles for the Hall-Kent second graders was 79 ; the seore for the children in the other school was 85 of above. But the other school enrolled children from higher socio-econemic backgrounds, so the scores were comparable, Kamii aggved. In contrat, when interviewed erally, the Hall-Kent children could explain the aritametic they had invented and why; the other childeen could not. Kamii aho made up a paper-and-pencil Math Sampler test of her own in which the children wrote out their answers and showed how they got them, instead of jusf fiting in a blank. On this text, 48 percent of Hall-Kent second graders correctly solved an addition problem on four double-digit numbers adapted from the National Assesment of Edacational Progres, the "gold standard" achievement tex given to a mandemized sample of American children, the exact percent of thind graders who got the problem right on the national assesmetst (Kannii, 1989, 159, 169).

Satiffied that second graders could reiment arithmetic as first gradens did, Kamii moved on to thind grade. In her 1994 Young Chillten Continue to Rerinvent Arithmetik, \(3 n d\) Grade, which she wrote with the help of third-grade teacher Sally Jones Livington from the Hall-Kent School, Kamii concinued to streas the importance of Piagetian constructivis, play-based mechods. Kamii included examples of meee group games, and meticulous, detailed descriptions of childera's own problem-solving techniques. As in her earlier bools, when cemparing classes taught by her methods vernus traditiomal methods, Kamil found that the childeen who had been taught arithmexic for three years sring ber methods were "better in logical and numerical reasoning" and "better thinkers when they are encouraged to do their own thinking" (Kamii, 1994, 207).

In this third book, Kamii set out the most controversial of all of her rescarch on how young childetn learn and should be tuught anithenetic. After ineroductory chapters on Piaget's theory of logico-mathematical knowiedge and on the histery of computational techniquer going back to the Hindus and Romans, she wrote about "The Harmfal Effects of Algorithms." Teaching children algorithms, such as \(18+17=35\), actually hurt children's ability to learn arithmetic, Kamii argued, for three reasons. Algorithms foreed children to "give up their own numerical thinking:" they "untaught" place value and hindered "children' development of numerical serse;" and they made chidren "dependent on the spatial arrangement of digits (or paper and pencil) and on other people" (Ksmil, 1994, 33). For intance, in addition, sabtraction, and multiplication, algorithms forsed children to go from right to left, ber Kamii ebserved that when childeren imented bow so solve these typer of problem on their own, they ahwas, she said, went from leff to right. In divinion, it was the opposite. With algorithrrs, Kamii said, childeen forgot hew to tae place value and often made illogical mikakes, because they added "all the digits as \(15^{\circ}\) (Kamii, 1994, 36) -And by using algorithms, children would sometimes aveid trying to solve a problem altogether becuase they felt dependent on their teachers, or on "paper and pencil" arithmetic (Kamii, 1994, 47).

\section*{Kamil's Impact}

The impact of Constance Kamiil research on Piagetian theory and pedagogy especilly on teaching arithmetic, continues to be felt in preschool and peimary education today She cranslated Piaget) abstruse Sdeas into practical activities for teachers, activities that preserved and extended the conitructivism of Piagets theory while remaining grounded in actual claspoom application. Kamii was cee of a handful of researchers who instantiated Piaget into preschool education, after his pyychology had been rejected in academia. Her approach to teaching arithmetic was highlighted in the "bible of preschool education," Sue Bredekamp's ubiquitous 1987 Developmontally Appoppriate Pructior is Eerfy Childhod Progamu Serving Chiltore Frow Aïth Throsgh/Age 8. Kamaii was abo mentioned in Bredekamp and Carol Copple's revised 1997 edition, thoagh not in the most recent 2009 edition, although it could be angoed that by now many of Kamii's ideas have become so widely accepted that they no longer require specific citation (Bredekamp, 1987;Bredekamp and Copple, 1997; Copple and Bredekamp, 2009). Many of Kamai's books are still in print, sell well, and have been released in innumerable international editions.

Kamins legacy in arithmetic teaching can still be felt in the primary grades, as well.An expanded vervion of her chapter on "The Harmful Effects of Algorithms" was reprinted in the National Council of Teachens of Mathematics Yarnoph in 1998, where it prowolked huge controversy (Kamsia \& Dominick, 1998). Many of Kamiǐy ideas about how to teach atithunetic through constructivist methods were publinhed in journals of the National Council of Teachers of Mathernatics, such as Thathing Children Meskemation asd the Journal of Researk in Mashenatioc Ehwation, where one of her co-authored reports appeared as recently as 2010, giving Kamins ideas wide currency (Kamii \& Rassell, 2010). Texabook deigners adopsed some of Kamirs metbods, especially TERC, whose widely-cued series Leverigations is Namber, Data, and Space, developed in the 1990s, incorporated much of Kamils philonophy. In fact, hnvenigentime and Kamil's ideas aboat the superiority of childcentered, cocatroctivist arithmetic teaching were at the center of the "mach wars" that raged in the 1990 and reverberate todyy.

In her 800 and still going strong, Kamii has an abiding faith in the power of Jean Piagee's paychology as the scientific basis of edacation. Sbe las devoted ber long 可e to promoting constructivis approaches to education for young chillern from preschool through the primary grades and still wants to find a th grade clas in which to do more research on her Piagetian approach to teaching arithmetic. She told me that she would aloo like to get back in touch with Siegfried Engelmann and retest some of the studenes aught via his Direct Instraction to prove once and for all that the and Piaget are right about how children learn. It is hard to imagine modern early childhood education withoat the games, math manipulatives, and other child-centered methods that Comance Kamii encouraged prechool teachers to use.A giant in the debase over play that still rages today, Kamii remains
firmly convinced that young children shoald be given the oppottunity to learn autonomoesly.

\section*{Bibliography}

Abboer, I. S. \& Well, D. W. (1985). Matematio maly (Teacheri Bd, Level 2). Orlaedos Harcourt Brace Jowanovich.
Beatry, B. (2006). Prychologizing the third R: Hall, Drwey, Thorndikr, and Progressive-Era iden on the learning and teaching of arithmetic. In B. Beatry E. D. Cahan, \&) Geant
 Averik (pp, 35-55). New Yoke Teachens College Preas.
Beary, B. (2009). Transibory coensections: The stception and rejection of Jean Pageth pyychology in the Nursery School Movemest in the 1920n and 1990. Hübry of Edacaripe Quarterty, 49, May: 442-464.
Bcatr. B. (2012). The debate over the poang "disadvantaged chld"! Rect, clas, culture, language, developmental prychologx and peechool intervention. Tadhen Colloge Renord. June: 1-36.
Bereiter, C, \& Englemann, S. (1966), Traching dinahuefgged dildym is the prenhool. Englewood Cliff, NJ: Preatice-Hall.
Berrseta-Clecsent, , R., Schweinhart, L. J. Barnetx, W. S., Epatein, A. S. \& Welkart, D. P.
 Ypillanti, Mi: High/Scope Preis.
Deedekamp, S. (Ed). (1987). Developenevially appropriate practior in earty childhad progsmes atnigg chilinex froer birth through aye 8, Wathington, DC: Natiocal Asociation for the Edacation of Yourg Chiidren.
 stilhood magores (Revised edn.). Whalingwn, DC: National Association for the Edocation of Yoong Chỉdren.
Beedelamp, S. \& Copple, C. (Edi.). (2009). Deriopmentally appopriate pratior in ronly chilihood Frograus (3ted edn), Wathington, DC:-National Amociation for the Education of Young Childen.
 Univessity of Clicago Press,
 Univentiry Press.
 New York: Bavic Boole.
DeVries, R. \& Kohlberg. L. (1987), Cenutwothir easly edwation. Whahingwon, DC: National Asoclation for the Edvcation of Young Childen.
 172-175.
Ellisd, D. (1968, May 26). Giant in the munery - Jean Piagee. The New Ype Tises Suedry Mogazint.
Engelmann, S. E. (1971). Doet the Plagerian approach imply instuetioe? In D. R. Getert, M. P. Food, \& G. B. Mamer (Eda.), Mestarment and Paget (pp 118-126). Nrw York: MeGew-Hill Book Coespany.
Engelmaen, S. E. (1971)- Open dikustion. In D. R. Green, M. R. Food, \& G. B. Flamer, (Fdb). Mearnverest and Flaget (p. 147). New York: McGraw-Hill Book Compuyy

Finkristein, B. (1989). Governieg she yougy Thacker behsvier in papular prinary shopals in 194h Centry Uniked Santes. New Yote: Falmes.
FavelL. J. H. (1963). The dovelppenotal prycholagy of Jem Pager. Princeson, NJ.:an Nostrand. Gray, S. W. \& Klaus, R. A. (1965). An experimental perichool poogram for culturally deprived childen. Child Developwent, 36,887-898.
Green, D. R., Fopd, M. P. \& Flamet, G. B. (Eds). (1971). Meanament avd Plogyt. Nrw York: McGerw-Hill Book Company.
Hall, G.S. (1911). Eduarianal prollows. New York: D. Appletion.
Hunt,J. M. (1961). Intollgence and oppelens. Nra York:The Romald Press Compasy.
 doctoral diturptatioc), Harvant Graduate School of Edocation.
Joseph, L. (1999). Metamorphosis. In C. Kamii, \&又 L. L. Joreph, Youg dhlires cinsinse to neinent anthweric, 2ed gnade (pp. 151-156). New York: Teachens College Press
Kamin, C. (1972a). An application of Piagetl) theory to the concepesalization of a preschool
 (pp, 91, 127). Bomone Allym \& Bucon.
Kamia, C. (1972b). A sketch of the Piaget-derived preschool curriculum developed by the Yprilman Early Edocation Program. In S.J. Braun \& E. Edwards (Edi.), Hawry and theary of atrly chilhaod odvation (p.295). Worthington, OH:Charion A- Jones.
Kamii, C.(1973). Pedugogical principles derived from Puget') theory: Relevance for odscational practice In M. Schwebel \&). Raph (Bda), Phaget is the clownom (pp.19)-201), New York: Basic Boolc.
Kamii, C. (1980). Gnouy gowes in earfy edvation: Inepliteliaed of Payer) thary (Appendix). Waringoon, DC: Napoeal Aswociasion for the Edpcation of Young Children.
Kanii, C. (1951, October). Appendix, autonomy as the aim of edacation: 佂plicationa of Piageth boory. Keywote address presented at the annaal conferences of the Noeth Carolina Auspiation for the Education of Young Children, Wiruton-Salem, NC and DuPage Regional Uait of the Chicago Athodation for the Edocation of Young Children, Glen Ellyn, IL.
Kamil,C.(1982). Nurner is proshool and hindingertrn. Whathington, DC-Nusional Adsociution for the Edvarion of Young Children.
Kamil, C (1987). Arthmetic: Chidsenl chinking or their writing of correst answen? Arishewtik Thather, 35, 2.
Kamii, C., perional commanication, March 13/14, 2008.
Kamii, C., personal commanication, March 21, 2012.
 theiry. New Yoek: Teachers College Press.
Kamii, C. \& Derman, L. (1971). Comments on Engelmann! paper. Meanwonent and Playt. New York: McGtaw-Hin, 142, 143, 145, 146.
Kamii, C. \& DeVries, R. (1976). Piaget, childvn, ond namber. Whatingoon, DC. National Association for the Education of Young Childern.
 Wathingtote, DC: National Association for the Edacation of Young Children.
Kamii, C. \& DeVries, R. (1983). Phpioal kowilelge in perchool edwatiwn: Implisations of Ploget) thory (2nd eth,) New Yoek: Teachen College Peeis.
Kamii, C. \& Dooninick, A. (1998), The harmful effecen of algotithma in grides 1-4. In L. J. Morrow \&c M.J. Kenney (Ide.), The tearking and lossuing of algorithut in shoot surherwatiar: 1998 NCTM Yerlowl (pp. 130-140). Reston, VA: National Council of Teachess of Mathematics.

Kamei, C, \& Hosuman, L. B. (2000). Young chilifen reifvent withmetic (2nd edn). Nerw York: Texchen College Press.
 New York: Teachen College Poes.
Kamii, C, with Liviaptoen, S.J. (1994). Mang ohilden sesilinat to reieved arithennic, Jrd grade. New Yoek:Teachens College Press
Kamii, C. \& Rusell, K.A. (2010). The older of two tetes;Young childven's development of

Kamil, C. \& Weikare, D. P. (1963). Marks, achievement, and intelligence of seventh graders who were retained (nompromoted) once in elementary school. Joumal of Edinations! Remenk, 56, 452-459.
Lascarides, V. . \&. Hinitz, B. E (2000). Heary of early delationd edactios. New York: Falmer.
Minhowhach, A. (1972). Farly edacution in lurael. In S.J. Braun \&c I. Idiwards (Bds.), Hültry
 Publiahing Company.
Moroos, W.S. (1917). Developsent of ewhhnetic at a achool atabiet. Barrau of Education Publicabios, 10.
Piaget. J. (1971). The theory of itiges of cognitive development. In D. R. Green, M. P. Ford, \& G. B. Flamer (Ed.). Meanemetnt and Phayt (pp. 1-11). New York: McGerw-Hill Book Compray.
Pugret, J. (1973). To andented is to inves (originally pubtuhed in 1948). New York:Viking.
Radin, N L. \& Kamie, C. (1965). The child searing attituden of dipadvantaged Negro mothers and some edocational implications. The Joureal of Negy Ehwation, 34, 135-146.
Radin, N. L. \& Kamil, C. (1967). A framewoek for a porschool curriculam based on tome Plagetian conceper, Jounal of Cmative Behander, 1, 314-324.
Radis, N. L. \& Kamii, C (1967), Clas differences in the socialization pawerse of negro mothen. Jamal of Marrigy asd the Fumily, 29, 302-310.
Schweinhart, L.J, Montie, J, Xiang, Barnett, W. S, Belfeld, C. R, \& Nover, M, (2005). The Figh/Singe Pryy Preakool Souly through age 4Q Ypeilanti, Ml: High/Scope Press
Schweinhart, L. ., Bames, H. V, \& Weikat, D. P. (1993), Sygujuart bengiv: The High/Supe Perry Preshsol Soaly thranh ase 27, Yprilanti, MI: High/Scope Press.
Sinclair, H. \& Kamii, C. (1970). Some implications of Piagets theory for teaching young children. The School Revinu, 78, 169-183.
Smiluraky, 5 (1968), The offets of sudadumaric pliy in diaduastagnd prochool childen. New York: Wily:
Soequist, H. D \& Kamil, C. \(\{1967\)). Applying some Piagotian concepts in the clasroom for the diadvinaged. Young Chilines, 22, 252-246.
Thomadike, E. L. (1917). The Themdibe enthestios. Chicagoo Rand-McNally.
Thorndike E. L. (1922), The pyodelegy of anitneric. New Youk: Macmilun.
 Whshingroen, DC: Nasioeal Asoctition for the Edocation of Young Children.
Weikart, D. P. (2004), Has Figh/Soupe gonw:A nemak. Ypilind, Mi: High/Scope Press.
 Trashen Collegt Pren.
 New Bork:Tcachm Cotleg Trew.
 New Yoks Todhed Celloge Pren.

 Ronorch, \(56,453-459\),

 Publahing Conpaop
 Pulticuico, 10

 Compling.

iladin, N. L. A Kamil, C: \(\{19\langle 5\}\). The child waring amoude of doadranoged Negro

Ridin, N.L. \& Kanait, C (1\%67) A frameapl for is puechool carricularn bowed on mane

 motherc. Jowsed of MGequge esf dir Foesly. 29, 300-310.

 shdtren. The Silaw Rndier, 78, 169-153.
 York:Wilp
 she diadencogod. Youg Clildon, 22,232-244.
Thornthes, E. L. (1F17, The Thevefibe elifmenas. Chicagas Rund-McNilly

 Whahingoos, DC: National Amociapion foe the Edvewiee of Young Childron.

\section*{WHSSACHUSETTS INSTITUTE OF TECHNDLOGY} A.t. LADOKATORY

\author{
Artificial Intelligence Meso No. 249
}

Suly 1971
t0t0
Mero No. 4

\title{
TEACHINS CHILDREN TO BE MATRENATICIANS \\ VS. \\ TEACHINS ABOUT MATNEMATICS \({ }^{1}\)
}

\author{
Seymour Papert
}

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Instifute of Technology. Support for the laboridtory's education research is prorided in part by the National science Foundation under grant 6J-1049.
\({ }^{1}\) To be published in the International Journal of Nothematical Education is Scfence and Techeplogy (Maw York: John Wiley is Sons. 1972) and in Froctedings of 1970 CDYkEL Conference on Alpabra (Carbondale, Illínois: CEDEL. Spring. 1971).

TEACHINS CHILDREN TO BE MATHENATICIANS VS. TEACHINS ABOUT MATHEMATICS
by
Seymour Papert

\section*{1. Preface}

Being a mathematician is mo nore definable as "knowing" a set of mathematical facts than being a poet is definable as knowing a set of 1 inguistic facts. Sone modern nath ed reformers will give this statement a too easy assent with the coment: Fes, they nost understand, not merely know." But this misses the capital point that being a mathenatician, again like being a poet, or a composer or an engineer, means doing, rather than knowing or understanding. This essay is an attempt to explore sone ways in which one alight be able to put childran in a better position to do mathenstics rather than merely to learn about it.

The plan of the essay is to develop sone examples of new kinds of athematical activity for children, and then to discuss the general issues alluded to in the preceding paragraph. Without the examples, abstract statesents about "doing," "knowing," and "understanding" mathesatics cannat be expected to have more than a suggestive meaning. On the other hand the sescription of the exanples wlll be easier to follow if the reader has a prior idea of their intention. And 10 I shall first sketch, very impressionistically, my position on some of the major issues. In doing 30 I shall exploit the dialectical device employed in the previous paragraph to obeain a 1 ittle more precision of statement by explicitly excluding the nost 11 kely misinterpretation.

It is generally assumed in our society that every child should. and can, have experience of creative work in language and plastic arts.

It is equally penerally assuned that very few people can work creatively in sathenatics. I believe that there has been an unwitting conspiracy of psychologists and mathenaticians in maintaining this assunption. The psychologists contribute to it out of genuine fignorance of what creative mathematical wark might be 11 ke . The mathenaticians, very often, do so out of elitism, in the fors of a deep conviction that mathesatical creativity is the privilege of a tiny minority.

Here agafn, it is necessary, if we want any clarity, to ward off a too easy, superficial assent fron nath ed refomers who say, "Yes, that's why we Eust use The Method of Discovery," For, when "Discovery" means discowery this is wonderful, but in reality "Discovery" usually means something akin to the following fantasy about a poetry class: the discovery-nethod teacher has perfected a series of questions that lead the class to discover the line "Mary had a ilttle lanb." My point is not that this would be good or bad, but that no one would confuse it with creative work in poetry.

Is it possible for children to do creative mathenatics (that is to say: to do mathenatics) at all stages of their scholastic (and even adult!) lives? 1 will argue that the answer is: yes, but a great deal of creative nathematical work by adult mathematicians is necessary to aake it possible. The reason for the qualification is that the traditional branches of mathematies do not provide the most fertile ground for the easy, prolific growth of mathenatical traits of mind. We may have to develop quite new branches of mathenatics with the special property that they allow beginners nare space to romp creatively, than does nunber theory or modernistic algabra. In the following pages wf11 be found some specific examples which it would be pretentious to call "new pedagogical oriented branches of mathenstics \({ }^{\text {b }}\) but which will suggest to cosperative readers what this phrase could mean.

Obstreperses readers will have no trouble finding objections. Mathenatical elitists will say: "How dare you bring these trivia to disturb oor contemplation of the true nathematical structures." Practical people will say: "Romping? Pomping? Who needs \(i t\) ? that about practical skills in arithmetic?*

The snob and the anti-snob are expressing the same objection in
different words. Let ne paraphrase it, "Traditional schools have found mathenatics hard to teach to so-called average children. Someone brings along a new set of activities, which seen to be fun and easy to learn. He declares then to be mathematies: We11, that does not nake then mathenatics, and it doesn't turn then into solutions to any of the hard problems facing the world of math ed."

This argument raises serious issees, from which I single out a question which I shall ask in a number of different forms:

> In beconing a mathematician does one learn something other and nore general than the specific content of particular mathenatical topics? Is there such a thing as a Matheratical Way of Thinking? Can this be learned and taught? Once one has acquired it, does it then becoe quite easy to learn particular topics .. Iike the ones that obsess our elitist and practical critics?

Psychologists somtimes react by saying, "Oh, you mean the transfer probles," But I do not mean anything analopous to experiments on whether students who were taught algebra last year automatically learn geometry more easily than students who spent last year doing gymasties. I an asking whether one can identify and teach (or foster the growth of) something other than alpebra or geonetry, which, once learted, will make it easy to leare algebra and geseetry. No doubt, this other thing (let's call it the NNOT) can only be taught by using particular topics as vehicles. But the "transfer" experiment is profoundly changed if the question is whether one can use alpebra as a vehicle for deliberately teaching transferable general concepts and skills. The conjecture underlying this essay is a very qalified affirmative answer to this question. Yes, one can use algebra as a vehicle for initiating students to the mathenatical way of thinking. 致t, to do so effectively one should first identify as far as possible cocsonents of the ganeral intellectual skills one is trying to teach; and when this is done it wf11 appear that algebra (in any traditional sense) is not a particularly good vehicle.

The aiternative choices of vehicle described below all involve using computers, but in a way that is wery different from the usual
suggestions of using then efther as "teaching sachines" or as "super-silide-rules". In our ideal of a school nathenatical laboratory the computer is used as a means to control physfcal processes in order to achieve definite goals . . . for example as part of an auto-pilot systen to fly nodel airplanes, or as the "nervous system" of a nodel animal with balancing reflexps, walking ability, simple visual ability and so on. To achieve these goals satheratical prisciples are needed; conversely in this context mathenatical principles becone sources of power, thereby acquiping meaning for large categories of students who fail to see any point or pleasure in bookish math and who, under prevalling school conditions, simply drop out by labelling thenselves "not mathenatically minded."

The 800 easy acceptance of this takes the form: "Tes, applicat tions are motivating," But "motivation" fails to distinguish alienated work for a material or social reward from a true personal involvesent. To develop this point I need to separate a number of aspects of the way the child relates to kis work.

A simple, and important one, is the time scale. A child interested in flying model airplanes under computer control will work at this groject over a long period. He will have time to try different approaches to sub-problems. He will have time to talk about it, to establish a comon language with a collaborator or an instructor, to relate it to other interests and problems. This project-orifated approach contrasts with the problen approach of nost math teaching: a bad feature of the typical problen is that the child does not stay with it long encogh to benefit much from success or from fallure.

Along with tine scale goes structure. A project is long enough to have recognizable phases \(=\) - such as planning, choosing a strategy of atterpting a very sfrple case first, finding the simple solution, debugging it, and 50 on . And if the time scale is 10 g engough, and the structures clear enough, the child can develop a vocabulary for articulate discussion of the process of working towards his goals.

I believe in articulate discussion (in monologue or dialogue) of how one solves prsblers, of why one goofed that one, of what gaps or deformations exist in one's knowledge and of what could be done about
ft. I shall defend this belfef against two quite distinct objections. One objection says: "it's impossible to verbalize; problems are solved by intuitive acts of insight and these cannot be articulated." The other objection says: "it's bad to verbalize; renerber the centipede who was paralyzed wen the toad asked wifch leg care after which." One must beware of quantifier nistakes when discussing these objections. For exarple, J.5. Bruner tells us (in his book Towards a Theory of Iastruction) that he finds words and diagrams "inpotent* in getting a child to ride a bicycle. But while his evidence shows (at best) that sone words and diagrans are impotent, he suggests the conclusion that all words and diagrans are fimpotent. The interesting conjecture is this: the fimpotence of words and diagrans used by Bruner is explicable by 囬uner's cultural origins; the vocabulary and conceptual franework of classical psychology is sisply inadequate for the description of such dynasic processes as riding a bicycle: To pash the rhetoric further, t suspect that if Bruner tried to write a progran to make an \(18 M 360\) drive a radio controlled notorcycle, he would have to conclude (for the sake of consistency) that the order code of the 350 was impotent for this task. Now, in our laboratory we have studied how people balance bicycles and more complicated devions such as unicycles and circus balls. There is mothing complex or rysterious or undescribable about these processes. We can describe then in a non-impotent way provided that a suitable descriptive systen has been set up in adrance. Key composants of the onscriptive systen rest on csncepts like; the idee of a "first order" or "1inear" theory in which control variables can be assumed to act independently; or the idea of feedback.

A funsamental problen for the theory of mathenatical education is to identify and name the concepts needed to enale the beginner to discuss his matheratical thinking in a clear articulate way. And when we know such osncepts we may want to seek out (or invent!) areas of matheratical work which exemplify these concepts particularly well. The next section of this essay will describe a new plece of nathenatics with the property that it allows clear disoussion and simple models of heuristics that are foggy and confusing for beginners when presented in the context of more traditional elementary nathematics.
2. Turtle Gormetry: A Plece of Learnable and Lovable Maplenatics

The physical context for the following discussion is a quistuple consisting of a child, a teletype machine, a computer, a large flat surface and an apparatus called a turtie. A turtle is a cybernetic toy capable of moving forward or back in a particular direction (relative to itself) and of rotating about its central axis. It has a pen, which can be in two states called PENUP and PENDOWN. The turtle is aade to act by typing comands whose effect is illustrated in Figure 1.

\section*{Figane 1: TURTLE LWNGUAES}

At any tine the turtle is at a particular place and facing in a particalar direction. The place and direction together are the turtle's geonetric state. The picture shows the turtie in a field, used here only to give the reader a frave of reference:
(1)

The triangular picture shows

FORNHRD 50
(2)

LEFT 90
(3)

The turtle's position remained fixed. It rotated \(90^{*}\) *5 the left. So its directín changed. vanced 50 units in the direction it was facing.
 the direttion.

FORWRAD 150
(4)

(5)

FOAKARD 70

The turtle rotated left \(135^{\circ}\).
(Produces no visible offect. But the next FORWRD instruction wll leave a trace.) The effect of PENDOWN is to pat the turtle in a spite to leave a trace: the pen draws on the ground.
(a) Direct Comands

The following comands will cause the turtle to draw Figure 2.

PENDOWN
FORKARD 100
RIGHT 60
FOSMARD 100
BACX 100
LETT 120
FOFARRD 100

PEACE

\section*{(b) Defining a procedure}

The computer is assuned to accept the language LOCD (which we have developed expressly for the purpose of teaching chilidren, not programing but mathenatics). The LOCD idion for asserting the fact that we are about to define a procedure is 1llustrated by the following example. We first decide on a name for the procedure. Suppose we choose "PEACE". Then we type:

TO PEACE
1 FORMARD 100
2 RIGHT 60
3 FORKARD 100
4 埃CK 100
5 LEFT 120
6 FORMARD 100
END

These are directions telling the computer how to PEACE. The word "T0" infores the computer that the next word, "PEACE" is being defined and that the numbered ilnes constitute its definition.

The turtle doesn't move while we are typing this. The word "T0* and the lime numbers indicated that we were not telling it to go forward and so on; rather we were telling it how to execute the new comend. When we have indicated by the word "END" that our definition is complete the machine echoes back:
PEACE DEFIMED
and now if we type
PENDOWN
PEACE
the turtle will carry out the compands and dram Figure 2; Were we to
onit the comand "PENDOWV" it would go throuçh the motions of drawing ft without leaving a visible trace.

The pesce sign in Figure 2 lacks a circle. How can we describe a circle in turtle language?

An idoa that easily presents ieself to mathenaticians is: let the turtle take a tiry step forward, then turn a tiny amount and keep doing this. Thi might not quite produce a circle, but it is a good first plan, so let's begin to work on it. So we define a procedure:

TO CIRCUS
1 FORMARD 5
2 RIthr 7
3 CIRCUS
END

\section*{Notice two featares}
(a) The procedure refers to itself in 1ine 3. This looks circular (though not in the sense we require) but really is not. The effect is merely to set up a never-endimg process by getting the coeputer into the tight spot you would be in if you were the kind of person who cannot fall to keep a prosise and you had been tricked into saying, "I promise to repeat the sentence I just said."
(b) We selected the nurbers 5 and 7 because they seesed small, but without a fina idea of what would happen. However an advantage of having a computer is that we can try our procedure to see what it does. If an undesirable effect follows we can always debug it; in this case, perhaps, by choosing different numbers. If, for example, the turtle drew sonething like Figure 3a, we would say to ourselve, "It's not turning enough " and replace 7 by 8; on the other hand if it drew Figure 3 we might replace 7 by 6 .

Figure 3b

I wish I could collect statistics about how many methenatically sophisticated readers fell into my trap: Experience shows that a large proportion of math graduate students w111 do so. In fact, the procedure cannot generate either 3 a or 3 sb : If it did, it mould surely go on to produce an infinite spiral. And one can easily see that this is irpossible since the sase sequence of comands would have to produce parts of the curve that are aleost flat, and other parts that are very curved. More technically, one cas see that the procedure cirous must produce a close approximation to a circle (i.e. what is, for all practical purposes a circle) because it must produce a curve of constant curvature.

One can cose to the sare conclusion from a more general theorem. We call procedures like ctiscus "fixed instruction procedures" because they contain no rariables.

THEOREM: Any figure generated by a fixed instruction procebure can be bounded either by a circle or by two parallel straight lines.

Examples of figures that can and that cansot be so bounded are shown in Figure 4.

Figure 4

A Figure Bounded by parallel 1ines

A Figure Bounded nefther by parallel lines nor by a circle.

We now show how to nake procedures with inputs in the sense that the comand FORWARD has a nuber, called an input, associated with it. The next exarple shows how we do so. (The words on the title line preceded by " \(2^{*}\) are nanes of the inputs, rather like the \(x^{4} s\) in school algebra.) In the fifth grade class we read rMLNEER as dots NUMBER or as the thing of "MLMBER", enghasizing that what is being discussed is not the word "NuMeCR" but a thing of which this word is the name.

TO POLT :STEP ; RNELE
1 FOFMARD :STEP
2 LEFT : ANCLE
3 POLY :STEP =ANGLE
END

This procedure generates a rather wosserful collection of pictures as we give it different inpots.

Althouph POLY has provision for inputs it is really a fixed instruction procedure. To create one that is not, we change the last line of Pocr. We change the \(t 1 t l e\) also, though we do not need to do so.
```

    Old Procedure
    TO POLY :STEP :ANSLE
1 FORMARD ISTEP
2 LEFT :ANGLE
3 POLY :STEP ;ANCLE
EHD

```

New Prosedure
```

TO POLYSP1 :STEP :ANGLE
1 FORMARD :STEP
2 LEFT :ANGLE
3 POLYSPI ;STEP+20 :ANGLE
END

```

The effeet of POLYSPI is shown in Figure 5.

Figure 5
POLYSP1 590
or
Squiral

We have seen we can use Pocy to draw a circle. Can we now use it to draw our peace sign? We could, but will do better to make a procedure, here called AMC whose effect will be to draw any circular segnent given the diareter and the angle to be dram as in Figure 5. The procedure is as follows where in 1 ine 2 a special constant called "PIE" is used and the asterisk sign is used for multiplication. (Do not assune that :PIC is what its name suggests.)

TO ARC :DIAM :SECTOR
1 IF :SECTOR=0 STOP
2 FORRARD :PIE*:DIAM
3 RIGIT 1
4 ARC :DIAM :SECTOR-1
EMD

We can now make a procedure using the old procedure PEACE as a sub-procedure:

TO Superpeace
1 ARC 200360
2 RIGNT 90
3 PEACE
END

\section*{Figure 6}

Better yet we rould rowrite PEACE to have finputs. For exanple:
TO PEACE :SIZE
1 FORMARD :SIZE
2 RIEATT 60
3 FORNARD :SILE
4 BACK :512E
5 LEFT 120
6 FOROLRD ;SIZE
7 RIGHT 90
8 ARC \(2 *\) :SIZE 360

Then peace siggns of different sizes can be made by the comands:
PEACE 100
PEACE 20
and so on.

We can use the comand ARC to drew a heart:

TD HEART :SIZE
1 ARC ISIZE/2 180
2 RIGAT 100
3 ARC :SIZE/2 180
4 ARC :SILE*2 60
5 RIGT 60
5 ADC :SIZE*2 60 END

MINITHEOREM: A heart can be made of four circalar arcs.

We can also use it to draw a flower. Notice in the following the characteristic bollding of new definitions on old ones.

A computer progran to draw this flower uses the gesmetric observation that petals can be decomposed (rather surprisingly!) as two quarter circles. So let's assume we have a procedure called TO QCIRCLE whose effect is shown by the examples. Some of them show inftial and final positions of the turtie, soem do not.

QCIRCLE 50

QCIRCLE 100

Now let's set how to make a petal.

TO PETAL :S12E
1 QCIRCLE :SIZE
2 RIGHT 90
3 QCIRCLE :512E
END

PETAL 100

TO FLOWER :SIZE 1 PETAL :SIZE 2 PLTAL ;512E 3 PETAL :SI2E 4 PETAL 3512 E END

FLOMER 100 STEM 100
TO STEM ;SI2E
1 RIGHT 160 .
2 FORNARD 2*:SIZE
3 RIGHT 90
4 PETA ;SIZE/2
5 FORNARD :SIZE
END

TO PLANT :SIZE 1 PENDON
2 FLONER :\$IZE
3 STEM 2SIZE
4 PENUP
ENO

Now let's play a 11 ttle.

TO HEXAFLOWER SSIZE
1 RIGTY90
2 FORWARD 4*:SI2E
3 PLANT :SIIE
4 FONKARD \(5512 E^{-}\)
5 RIGHT 30
6 HEXAFLOWER :SIZE END

3. Creativity? Matheratics?

In classes run by merbers of the K.I.T. Artificial Intelligence Laboratory we have taught this kind of geometry to fifth graders, some of whot were in the lowest categories of performance in "mathematics". Their attitude towards mathenatics as momally taught was well expressed by a fifth grade girl who said firaly, "There ain't nothing fun in math:" She did not classify working with the conputer as aath, and we san no reason to disabuse her. There will be time for her to discover that what she is learning to do in an exciting and personal way will elucidate those strasge rituals she reets in the math class.

Typical activities in early stages of work with children of this age is exploring the behavior of the procedure POLY by giving it different inputs. There is inevitable challenge - and competition \(=\) in producing beautiful or spectacular, or just different effects. One gets ahead in the game by discovering a new phenonenon and by finding out what classes of angles will produce it,

The real excftement cores when one becones courageous erough to change the procedure itself. For example making the change to POLYSPI occurs to some children and, in our class, led to a great deal of excitement around the truly spontaneous discovery of the figare now called a squiral (Figure 5). (Mote: By spontaneous I mean, anengst other things, to exclude the situation of the discovery teacher standing in front of the class soliciting pseudo-randonly geserated suggestions. The squifal was found by a child sitting all alone at his computer terminal!) By no means all the children will take this step -- indeed once a fow have done so it becones derivative for the others. Nevertheless, we wight encourage then to explore inputs to Palrspl. There is roon here for the discovery of rore phenorena. For example, taking ;WNLLE as 120 produces a neat triangular spiral. But 123 produces a very different phenonena.

Figure 7

POLYSPI 5120

What else produces siailar effects?

\section*{Figure 8}

POCYSPI 5 121

POLYSPI 593

The possibilities for original ainor discoveries afe great. One girl becane excited for the first time about nathenatics by realizing how easy it was to nake a progran for Figure 9 by
(1) observing herself draw a similar figure
(2) naming the elements of ber figure -. "B16" and "SMALL" .so that she could talk about then and 50 describe what she was doing
(3) describing it in LOOD

TO GRONSHRTMK \(2 B I 6\) :SMACL
1 FOFMARD iBIG
2 RICHT 90
3 FOPKARD ; 5MNLL
4 RIGHT 90
5 GKOWSHRINK : BIG-10 :SMALL+10 EMD

\section*{Figure 9}

The possibilities are endless. These are small discoveries. But perhaps one is already closer to mathematics in doing this than in learning new formal manipulations, transforaing bases, intersecting sets and drifting through misty lessons on the difference between fractions, rationals and equivalence classes of pairs of integers. Ferhaps learning to make small discoveries puts one more surely on a path to making big ones than does faultlessly learning any number of sound algebraic concepts.

\section*{4. Some Physical Matheratics}

The turt1e language is appropriate for many important physical probless. Consider, for exapple, the probiem of understanding planetary orbits as if one were a junfor high school student, One would find conceptwal barriers of varying degrees of difficulty. Certainly the idea of the imerse square law is simple esough. Sonewhat harder is the representation of velocities, accelerations and forces as vectors. But the insuperable difficulty in reading a text on the subject comes from the role of differential equations. The really elegant and intelligible physical ideas give rise to local differential descriptions of orbits; translating those into global ones usually involves going through the messy business called "solving" differential equations.

Turtle geometry belps at all these points. The use of vectors is extremely natural. And the local differential description takes the form of a procedure that can be run so as to produce a drawing of a solution or studied using theorems and analytic concopts aboat procedures.

The franework for thinking about orbital theory in turtle terms presupposes prior contact with the concepts of state and of quantized time - both of which occur very easily and naturally in many computational situations. The state of the "planet" is its position and a certain vector called, say "JuFP". If the planet were left alone it woyld nove by iJUP at every clock time. Thus it would go off, forever, is a straight lime. In the presence of the sun, we think of it as undergoing two movements: it moves by :JLMP and then it falls into the sun: To make this more precise we put these two actions topether using a procesare called "VECTOpADO", which could be defined by the children or given as a primitive. Thus we obtain a 1000 procedure whose general idea \(w i l l\) be intelligible to readers who try hard enough. (Two helpful coments: WhKE is the LOGO idioe for assignment, or setting values, 50 that 11 ine 1 in the procedure will cause the quantity VECTOAADD OF SJUNP FND FALL to be computed and given the nare "NEKJUNP", This computation assumes the existence of another procedure, called "FRLL", which will compute the "fall fnto the sun vector". These ideas might seen confusing when presented fast; ten year old children understand then fluently when they are presented properly.)
```

TO FLY :JLNP
1 MAKE
NANE "NENJONP"
THING VECTOAACD OF :JUNP AND FALL
2 SETHERDING (DIRECTION :NEWJUPP)
3 FOROLRD (LENSTH :NENJLPP)
4 FLY :NEWJUMP
END

```

Using this same idea one can easily deal in an experimental way with three bodies; one can design space-ship orbits, synchronous satellites and so on endlessly.
5. Control Theory as a Grode School Subject or Physics in the Finger Tips

We begin by inviting the reader to carry out the illustrated experiments - or to recall doing sonething siaslar.

One of the goals of this unit of study will be to understand how people do this and particularly to understand what properties of a human being deternine what objects he can and what objects he cannot balance.

A "formal physical" mosel of the stick balancing sifuation is provided by the apparatus 111 ustrated next:

A conputer controlled version replaces the track and the child by a turtle with the angle sensor plugged into fts sensor socket. A siaple ainded procedure will do a fair anount of balancing (provided that the turtle is fast11):

TO BEANCE
1 TEST ANGLE) 10
2 IFTRUE FORURAD 1
3 TEST AMSLE < -10
4 IFTRUE BACX 8
5 kait 1
6 BMLACE EMD

This procesure is written as part of a project plan that begins by saying: neglect all complications, try sonething. Complications that have been neglected include:
(1) The'end of the 1 ine bug.
(2) The overskoot bug.
(Perhaps in 1 ines 2 and 4 the value 8 is too much or tso little.)
(3) The Wobsly Aug

The TEST in the procedure might catch the rod over to the left while it is in rapid motion towards the right. When this happens we should leave will alone!
-22-

One by one these bugs, and others can be eliminated. It is not hard to bulld a progran and choose constants so that with a given setting of the movable weight, balance will be maintained for long periods of time.
6. What are the Primitive Concepts of Mathenatics?

To see points and 11nes as the primitive concepts of geonetry is to forget not only the logical priaitives (such as quantifiers) but especially the epistemological priaitives, such as the notion of a matheatical system itself. For most children at school the problee is not that they do not ubderstand particular matheastical structures or concepts. Rather, they do not understand what kind of thing a nathenatical structure is: they do not see the point of the ahole enserprise. Asking them to learn it is like asking then to learn poetry in a coepletely unknown foreign lanpuage.

It is sometimes said that in teaching mathematics we should emphasize the process of mathematization. I sayz excellent: But on condition that the child should have the experience of mathematizing for himself. Otherwise the word "nathematizing" is just one more scholastic tern. The thrust of the explorations 1 have been describing is to allow the child to have living experiences of mathenatizing as an introduction to mathematics. We have seen how he mathematizes a heart, a squiral, his own behavior in drawing a GRDNSHRINK, the process of balancing a stick, and so on. When mathenatizing familiar processes is a fluent, natural, enjoyable activity, then is the tire to talk about nathematizing mathematical structures, as in a good pare course on modern algebra.

But what are the ingredients of the process of nathenatizing? is it possible to formulate and teach knowledge about how one is to tackle for example, the probien of setting up a mathenatical representation of an object suth as the hearts and flowers we discussed earlier?

Our answer is very definitely affirastive, especially in the context of the kind of work described above. Consiour for example, how we would teach children to go about problens like drawing a heart, First step we say: if you cannot solve the problen as it stands, try simplifying it; if you cannot find a complete solution, find a partial one. No doubt everyone gives similar advice. The difference is that in this context the adrice is concrete ensugh to be followed by children who seam quite impervious to the usual math.

A simplification of the heart problea is to settle, as a first approximation, on a triangle; which we then consider to be a very primitive heart.

TO TRI
1 FORANDD 100
2 hlant 120
3 FOFNHED 100
4 RIGIT 120
5 FORMROD 100

TRI

ENO

Now that we have this construction firaly in hand we can allow ourselves to modify it so as to make it a better heart. The obvious plan is to replace the horizontal line by a strocture 1 ine. \(\$ 0\) we write a procedure to rake this. First choose it a name, say "Top", then write:

TO TOP :SIZE
1 ARC :S12E/2 180
2 RIGHT 180
3 ARG :SI2E/2 180 END

Replacing line 1 in TO TRI by TOP we get:

TO TRI
1 TOP 100
2 RIGHT 120 etc.

NEART WITH BUG

The effect is as shown! Is this a failure? We aight have so classified it (and ourselves:) if we did not have another heuristic concept:
subs and DEBUGAtnG. Our procedure did not fail. It has a perfectly intelligible bug. To find the bus we follow the procedure through is a very FORNAL way. (Formal is another concept we try to teach.) We soon find that the trouble is in line 2. A1so we can ste why. Raplacing

Iine 1 by TOP did what we wanted, but it also produced a SIDC-EFFECT. (Another important concept.) It left the turtle facing is a different direction. Correcting it is a mere matter of changing 11 ine 2 to RICHT 30. And then we can 90 on to make the fully curved heart. Unless we decide that a straight-sided one is good enough for our purposes.

Straight-sided |eart

Curved Heart

Our inage of beaching mathematics concentrates on teaching concepts and terninology to enable children to be articulate about the process of developing a mathematical analysis. Part of doing so is studying good nodels (such as the heart anecdote) and getting a lot of practice in describing one's own attempts at following the pattern of the model in other problens. It seens quite paradoxical that in developing mathenatical curricula, whole conferences of superb mathenaticians are devoted to discussing the appropriate langusge for expressing the formal part of nathematics, while the individual teacher or writer of text-bcoks is left to decide how (and even whether) to deal with heuristic concepts.

In sumary, we have advanced three central theses:
(1) The non-formal mathenatical primitives are maglected in most discussions of mathenatical curricala.
(2) That the cholce of content raterial, especially for the early years, should be aade primarily as a function of its suitability for developing heuristic concepts, and
(3) Conputational rathenatics, in the sense illustrated by turtle geometry, has strong adrantages in this respect over "classical" topics.

\section*{The Personal Road to Reinventing Mathematics Education}

Math education has fascinated me for a very long time. I was always good at arithmetic and despite having a pretty bleak elementary school experience; I could do what they called, "math." Test scores in the 6th grade indicted that I was mathematically gifted and earned me a place in something called Unified Math. "Unified" was an accelerated course intended to rocket me to mathematical superiority between grades 7 and 12 . Rather than take discrete algebra, geometry, trigonometry, etc., Unified Math was promised as a highspeed roller-coaster ride through various branches of mathematics.

Then through the miracle of mathematics instruction I was back in a low Algebra track by 9th grade and limped along through terrible math classes until my senior year in high school. In 12th grade, I enrolled in a course called, "Math for Liberal Arts." Today this course might be called, "Math for Dummies Who Still Intend to Go to College." I remember my teacher welcoming us and saying, "Now, let's see if I can teach you all the stuff my colleagues were supposed to have taught you."

This led to two observations:
1. Mr. O'Connor knew there was something terribly wrong with math education in his school.
2. I looked around the room and realized that most of my classmates had been in Unified Math with me in 7th grade. These lifeless souls identified as mathematically gifted six years ago were now in the "Math for Dummies Who Still Intend to Go to College" class. If this occurred to me, I wondered why none of the smart adults in the school or district had observed this destructive pattern?

Two things I learned in school between 7th and 12th grade kept me sane. I learned to program computers and compose music. I was actually quite good at both and felt confident thinking symbolically. However, majoring in computer science was a path closed to me since I wasn't good at (school) math - or so I was told.

I began teaching children in 1982 and teachers in 1983. I was 18-19 years old at the time. While teaching others to program, I saw them engage with powerful mathematical ideas in ways they had never experienced before. Often, within a few minutes of working on a personally meaningful programming project, kids and teachers alike would experience mathematical epiphanies in which they learned "more math" than during their entire schooling.

In the words of Seymour Papert, "They were being mathematicians rather than being taught math."

Teaching kids to program in Logo exposed me to Papert's "Mathland," a place inside of computing where one could learn to be a mathematician as casually as one would learn French by living in France, as opposed to being taught French in a New Jersey high school class for forty-three minutes per day.

I met Seymour Papert in 1985 and had the great privilege of working with him for the next \(20+\) years.

Papert was a great mathematician with a couple of doctorates in the subject. He was the expert Jean Piaget called upon to help him understand how children construct mathematical knowledge. Papert then went on to be a pioneer in artificial intelligence and that work returned him to thinking about thinking. This time, Papert thought that if young children could teach a computer to think (via programming), they would become better thinkers themselves. With Cynthia Solomon and Wally Feurzig, Papert invented the first programming language for children, called Logo. That was in 1968.

What makes Papert so extraordinary is that despite being a gifted mathematician he possesses the awareness and empathy required to notice that not everyone feels the same way about mathematics or their mathematical ability as he does. His life's work was dedicated to a notion he first expressed in the 1960s. Instead of teaching children a math they hate,
why not offer them a mathematics they can love?
As an active member of what was known as the Logo community, I met mathematicians who loved messing about with mathematics in a way completely foreign to my secondary math teachers. I also met gifted educators who made all sorts of mathematics accessible to children in new and exciting ways. I fell in love with branches of mathematics I would never have been taught in school and I understood them. Computer programming was an onramp to intellectual empowerment; math class was a life sentence.

It became clear to me that there is no discipline where there exists a wider gap than the crevasse between the subject and the teaching of that subject than between the beauty, power, wonder, and utility of mathematics and what kids get in school - math.

Papert has accused school math of "killing something I love."
Marvin Minsky said that what's taught in school doesn't even deserve to be called mathematics, perhaps it should just be called "Ma."

Conrad Wolfram, says that every discipline is faced with the choice between teaching the mechanics of today and the essence of the subject. Wolfram estimates that schools spend \(80 \%\) of their time and effort teaching hand calculations at the expense of mathematics. That may be a generous evaluation.

Over the years, I've gotten to know gifted mathematicians like Brian Silverman, David Thornburg, Seymour Papert, Marvin Minsky, and Alan Kay. I've even spent a few hours chatting with two of the world's most preeminent mathematicians, John Conway and Stephen Wolfram. In each instance, I found (real) mathematicians to embody the same soul, wit, passion, creativity, and kindness found in the jazz musicians I adore. More significantly, math teachers often made me feel stupid; mathematicians never did.

\section*{Time for Action}

The 1999 National Council of Teachers of Mathematics Standards said, " \(50 \%\) of all mathematics has been invented since World War II." This is the result of two factors; the social science's increasing demand for number and computing.

These new branches of mathematics are beautiful, useful, playful, visual, wondrous, and experimental. Computing makes some of these domains accessible to even young children, and yet you are unlikely to find the likes number theory, chaos, cellular automata, fractal geometry, topology... in the K -12 math curriculum.

Hell, I dream of a day when a math textbook uses the symbol for multiplication used on computer keyboards for a half century. It makes my head explode when a high school student doesn't know how to ask a computer to multiply two numbers.

Since No Child Left Behind, parents, politicians, and educators have been engaged in a death match known as the Math Wars. The prescribed algorithmic tricks proscribed by The Common Core have thrown dynamite on the raging fire about how best to teach math. Ignorance, fear, and superstition are a volatile brew and impediment to learning. Conrad Wolfram estimates that 20,000 student lifetimes are wasted each year by school children engaged in mechanical (pencil and worksheet) calculations. Expressed another way, we are spending twelve years educating kids to be a poor facsimile of a \(\$ 2\) calculator. Forty years after the advent of cheap portable calculators, we are still debating whether children should be allowed to use one.

We are allowing education policy and curriculum to be shaped by the mathematical superstitions of Trump voters. Educators need to take mathematics back and let Pearson keep "math."

\section*{Hard, Not Fun}

When Barbie said, "Math is hard," the politically-correct class expressed their faux outrage, but Barbie was speaking a ubiquitous truth only tacitly acknowledged by the brave or those severely damaged my school math. If math is hard, fixing mathematics education is even harder.

Study after study tell us that kids hate math, computers are less likely to be used in a math class than anywhere else in school, teachers have little confidence in their own mathematical abilities and were poor math students, formidable gender gaps still exist - even the stupid test scores by which some measure "achievement" are static or worse.

Faced with an abundance of research, personal history, and good oldfashioned intuition while screaming from the rooftops that math education is a shambolic failure, we just double down on what does not work.

\section*{Hope}

Against this backdrop of panic, misery, and despair there is room for optimism.

There is a renewed attention being paid to the importance of S.T.E.M. and S.T.E.A.M.

We live in a complex society awash in data. Citizenship depends on strong mathematical thinking and modeling skills.

Computational power has never been cheaper, easier to use, or portable. Today, you can ask your phone any question found in the K-12 math curriculum and receive an immediate answer. It can even "show all work." How will math education respond to this reality?

The maker movement has reenergized timeless craft traditions and supercharged such creative human expression with new tools and computational materials.

Kids are miserable. Parents are fed-up. They are not only opting out of standardized testing, but rejecting that which is tested and the way it is taught.

\section*{Why Progressive Educators Should Care About Reinventing Mathematics Education}

I had a conversation with Dr. Papert in 2004 in which he was on-fire about the need to revolutionize math education with all the urgency our society can muster. When I asked if his focus on math education was because he was a mathematician, Papert rattled off more than a dozen reasons why this was a priority.

One argument in particular stayed with me while I have forgotten others.
Papert said that no pedagogical innovation of the past century has had any real impact on math education and if that were not disconcerting enough, it ultimately meant that in practice, no matter how progressive or learnercentered a school aspired to be, there was one point in the school day when "coercion was reintroduced into the system." Math class was when kids felt badly about themselves and were being taught irrelevant tricks they might need one day.

Papert argued that this scenario was corrosive to any other constructive efforts undertaken by a school, eventually undermining efforts like projectbased learning, authentic assessment, student led inquiry, and other aspects of constructivist teaching. There is no way to make a noxious math curriculum more palatable.

Papert would ask how math class could feel more like art class, where students would become lost in their work, think deeply, act creatively, and produce an artifact they were proud of?

Most discussions of math education define "reform" as devising a clever new teaching trick or test intended to fix the kid and make them understand what's in a textbook relatively unchanged since the advent of movable type. This is the time for action.```

[^0]: 1 "quilt" by Enid H. W. is licensed under CC BY-NC 2.0
 2 "quilt top" by madelinetosh is licensed under CC BY-NC-ND 2.0
 3 "Alphabet quilt" by tirralirra is licensed under CC BY-NC 2.0

