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Micro:bit and MakeCode 
Getting Started Prompts

1) Program the micro:bit to display a new
image or scrolling text 

2) Program the micro:bit to display one
image when the A button is pressed and
a different image when the B button is
pressed. 

3) Program the micro:bit to display the
temperature. Test your thermometer.

Super duper gifted and talented extra
credit: Display the temperature in
Fahrenheit 

4) Program the micro:bit to display a
smiley face when the temperature is
above a certain value and sad face when
it gets cold. 

5) Program one micro:bit to “pass a
message” to another micro:bit, using the
radio features, when a user presses a
button.

You can’t handle this challenge!
Program two more micro:bits to pass
messages between each other. 

6) Program one micro:bit to cause another
micro:bit to produce some action, such
as light an LED, drive a servo, or run a
program. 

7) Make a micro:bit stopwatch. (tricky)

1-hour micro:bit Workshop Challenge

1. Program the micro:bit to behave like a
die rolled by a player. 

2. Instead of displaying a number, display
a die face. 

3. Add some effects to make it look (or
sound) like rolling a die before it settles
on a “side” 

4. Roll your die and have it send the value
to appear on a friend’s micro:bit. 

5. Make the die rolled in your hand make
something else happen on a friend’s die,
like flash an LED x times. 

6. Use your micro:bit die with Scratch to
control an animation or interact with a
board game you program.

Read more about the thinking behind the 
design of this activity at https://
inventtolearn.com/1-hour-microbit-
workshop-challenges/ 
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Getting Started with micro:bit Radio Communication 
By Gary S. Stager, Ph.D. 

 
Although the block-based MakeCode environment is quite intuitive, the radio functionality of the micro:bit requires a tiny 
bit of instruction. You can use the micro:bit’s radio functionality to pass messages, as a remote control, or even to model 
social behavior between robots. Here is a concise guide to get you started. 
 
Imagine the micro:bit as a walkie-talkie 
 

If you talk into a two-way radio, like a walkie-talkie, 
any other radio within range and using the same 
frequency or channel should receive your message. 
Friends should also be able to speak to you. It does 
not matter how many walkie-talkies are involved. 
Each radio on the same frequency can participate in 
the conversation. The micro:bit works in a similar 
fashion. 
 

Voice is but one of the forms of data a walkie-talkie 
can share. Some allow users to exchange morse 
code. The micro:bit doesn’t transmit voice, but it 
does have the ability to share text (strings) and 
numbers between a seemingly infinite number of 
micro:bits using the same channel within a limited 
physical range.

1. Each micro:bit in your “network” needs to be set to the same channel. If you are exchanging private 
messages, keep the channel extra secret quiet. To set the channel, each micro:bit being used needs to 
have an on start block that sets the same channel from 0-255. 
 

 
 
2. Each micro:bit needs code to broadcast messages/data to other listening micro:bits and code for reacting 

once it “hears” a new message. In this case, when a user presses the A button on the micro:bit, a message 
of “Good Morning!” is broadcast. If no other micro:bit is listening, that message falls on deaf ears. 
 

 
 

3. If more than one of the micro:bits in your community contain blocks like the first two and the next one, 
you will have created a simple text-based walkie-talkie system. 
 

 
Use an on radio received block and drag the receivedString variable into the input of the show 
string block. This will replace a literal message with the variable one being broadcast by another micro:bit. 
If dragging the variable into the container is too difficult, the variable may also be found in the blocks under 
the radio menu. 

It is critical to decide if you are 
sending & receiving numbers or 
strings (text). You must the 
choose the correct send and 
receive blocks according to the 
data type. 
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That block has the job of listening until a new message is broadcast (within) range and then doing something. 
In this case, it displays the message for the owner of the receiving micro:bit to read, just like passing a note or 
sending a text message. 
 
You can of course program other buttons or micro:bit movements to send other messages. 
 
All of the micro:bits participating in this chat need to have the same three blocks, or reasonable facsimiles 
downloaded to them. 
 
You can also send numbers! 
You might send a numerical value between micro:bits when you wish to trigger an event without a textual 
(string) message being received and displayed. For example, what if you want to tell another micro:bit to start 
an animation, flash an LED X times, or tell your robot to turn left or right? Sending a number might just do the 
trick. 
 
1. Set the channel as you did in the previous example. 
2. Use an radio received receivednumber block to build a simple animation that will repeat the 

number of times one micro:bit broadcasts to others. 
 

 

 
 
Strings and numbers may be shared via radio in the same program. 
 
Remember that every micro:bit in your network needs to have similar send and receive programs downloaded 

to the communicating micro:bits! Any program changes need to be downloaded to all of the micro:bits. 
 
Challenges: 
1. Make an LED connected to another micro:bit flash a certain number of times. 
2. Shake one micro:bit to display a random dice face on a second micro:bit 
3. Tilt one micro:bit to control the motions of a machine containing another micro:bit. 
4. Invent a way for micro:bits to send messages across greater distance than their normal range. Clue: Think 

about how telegraphy facilitated Western expansion in the United States. 
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New & Improved Graph a Mystery Picture #1 – lynxcoding.club 
 

Secret Picture 1 Coordinates Procedures Secret Picture 2 Challenge 
 
[ 1 3 ] 
[ 2 2 ] 
[ 3 2 ] 
[ 2 1 ] 
[ 3 0 ] 
[ 2 0 ] 
[ 2 -4 ] 
[ 1 -6 ] 
[ -1 -7 ] 
[ 0 -8 ] 
[ 2 -9 ] 
[ -1 -9 ] 
[ -1 -8 ] 
[ -2 -7 ] 
[ -3 -7 ] 
[ -4 -8 ] 
[ -2 -9 ] 
[ -5 -9 ] 
[ -5 -8 ] 
[ -4 -7 ] 
[ -7 -5 ] 
[ -8 -3 ] 
[ -8 0 ] 
[ -6 -1 ] 
[ -3 -1 ] 
[ -2 0 ] 
[ -2 2 ] 
[ -1 3 ] 
[ 1 3 ] 
[ 1 4 ] 
[ 0 3 ] 
[ -1 4 ] 
[ -1 3 ] 
 
These coordinate points will be 
used in a procedure to get the 
turtle to plot them for us. 

to mypicture 
pu 
setpos [1 3] 
pd 
setpos [1 3] dot 
setpos [2 2] dot 
setpos [3 2] dot 
setpos [2 1] dot 
setpos [3 0] dot 
setpos [2 0] dot 
setpos [2 -4] dot 
setpos [1 -6] dot 
setpos [-1 -7] dot 
setpos [0 -8] dot 
setpos [2 -9] dot 
setpos [-1 -9] dot 
setpos [-1 -8] dot 
setpos [-2 -7] dot 
setpos [-3 -7] dot 
setpos [-4 -8] dot 
setpos [-2 -9] dot 
setpos [-5 -9] dot 
setpos [-5 -8] dot 
setpos [-4 -7] dot 
setpos [-7 -5] dot 
setpos [-8 -3] dot 
setpos [-8 0] dot 
setpos [-6 -1] dot 
setpos [-3 -1] dot 
setpos [-2 0] dot 
setpos [-2 2] dot 
setpos [-1 3] dot 
setpos [1 3] dot 
setpos [1 4] dot 
setpos [0 3] dot 
setpos [-1 4] dot 
setpos [-1 3] dot 
end 
 
to dot 
setpensize 3 
pd fd 0 
setpensize 1 
end 

Can you write a new 
procedure to connect these 
points? 
 
Be sure that your procedure 
has a new name! 
 
[-6 -9] 
[-6 -8] 
[-7 -7] 
[-8 -5] 
[-8 -2] 
[-6 0] 
[-7 3] 
[-5 4] 
[-4 3] 
[-5 3] 
[-5 2] 
[-4 0] 
[-3 3] 
[-1 4] 
[0 3] 
[-1 3] 
[-2 2] 
[-2 0] 
[-1 0] 
[0 -1] 
[0 -2] 
[3 -2] 
[3 -5] 
[-2 -8] 
[-2 -9] 
[-6 -9] 
 
Here’s a super version of 
dot for even cooler pictures! 
What does it do differently? 
 
to dot 
setpensize 3 setc “red 
pd fd 0 
setpensize 1 setc “black 
end 

 

Mathematician’s Mind-boggling Challenge 
 
How can you make the turtle draw a larger version of your connect-the-dots graph? 
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Getting the Computer to Work for You 
 
Lots of what kids experience while programming is a form of working for the computer. You formalize 
thinking and communicate precise directions to the computer. Once you develop a bit of 
programming fluency, the computer can work for you. Let’s use the Lynx dialect of Logo for this 
activity. http://lynxcoding.club 
 
In this context, the most obvious shift is in reducing the amount of typing a user must do to get a 
computer to graph a nonspecific number of coordinate points. 
 
The First Simplification 
The mypicture procedure has an obvious and immediate need to simplification. Anytime you see a 
repetitive pattern or set of similar instructions used multiple times, it may be a good time to consider 
writing a helper procedure to do more of the work. Setpos [ x  y ] dot is a great example. 
Let’s create a go procedure that takes a position (expressed as a list of two numbers representing x 
and y) as input. 
 
to go :point 
setpos :point 
dot 
end 
 
Now, your mypicture procedure can look like this. 
 
to mypicture 
pu 
setpos [1 3] 
pd 
go [1 3]  
go [2 2]  
go [3 2]  
. 
. 
. 
end 
 
That’s Still Too Much Work! 
Using list processing, we can eat through a list of coordinate points and graph them in sequence, 
without even knowing how many points there are. The following recursive procedure does this. 
 
to grapher :list 
if empty? :list [stop] 
go first :list 
grapher bf :list 
end 
 
Grapher takes a list as input, goes to the first set of coordinates in the list, and then runs the same 
procedure again, but this time passes everything but the first item in the list (a pair of coordinates) 
back to the grapher procedure. The points are a list of lists. 
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The if empty? :list [stop] line is called a stop rule. The stop rule tells the computer to 
stop the procedure as soon as the list of inputs is empty. A programming line such as this is used in 
countless contexts. Test it out in the command center. 
 
Grapher [[0 0] [0 50] [50 50] [50 0]] 
or 
Grapher [[0 0] [0 50] [50 50] [50 0][35 35]] 
 
The stop rule allows you to use as many or few elements in the list input to the procedure. 
 
My Picture is Too Small! 
Now that we’ve written a procedure to eat through a list of any size and graph the coordinates found 
in the list, we need a way to change the scale of the drawing. The first obvious improvement to the 
grapher procedure is to add an input for scale. 
 
to supergrapher :list :scale 
if empty? :list [stop] 
. 
. 
end 
 
So far, so good. Our procedure has two inputs and a stop rule, but where’s the beef? 
 
We need to take apart our list of coordinates, multiply each element by the scale, and then put the 
coordinates back together so the turtle may be sent to that new place on the screen. 
 
to supergrapher :list :scale 
if empty? :list [stop] 
setpos list (first first :list) * :scale (last first :list) * :scale 
dot 
supergrapher bf :list :scale 
end 
 
If you don’t understand what’s happening in the setpos line of this procedure, try the following in the 
command center. 
 
show first first [[10 20] [30 40] [50 60]] 
show (first first [[10 20] [30 40] [50 60]]) *5 
show list (first first [[10 20] [30 40] [50 60]]) * 5 (last first 
[[10 20] [30 40] [50 60]]) * 5 
show (list (first first [[10 20] [30 40] [50 60]]) * 5 (last first 
[[10 20] [30 40] [50 60]]) * 5) 
 
What happened? 
 
list’s job is to put two items together and report them as a list, like sentence, if you have more 
than two elements, put the entire expression in parentheses (     ) in order to create a list of many 
items. 



© 2021 Gary S. Stager - Inventtolearn.com  4 

 
Now graph like crazy with the new supergrapher! 
 
Supergrapher [[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [-6 0] [-7 3] 
[-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 2] 
[-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -9]] 5 
 
Supergrapher [[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [-6 0] [-7 3] 
[-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 2] 
[-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -9]] -
10 
 
If you just want to play with the newly discovered chicken, you could write a procedure like this one. 
 
to superchicken :scale 
supergrapher [[ 1 3 ] [ 2 2 ] [ 3 2 ] [ 2 1 ] [ 3 0 ] [ 2 0 ] [ 2 -4 
] [ 1 -6 ] [ -1 -7 ] [ 0 -8 ] [ 2 -9 ] [ -1 -9 ] [ -1 -8 ] [ -2 -7 ] 
[ -3 -7 ] [ -4 -8 ] [ -2 -9 ] [ -5 -9 ] [ -5 -8 ] [ -4 -7 ] [ -7 -5 
] [ -8 -3 ] [ -8 0 ] [ -6 -1 ] [ -3 -1 ] [ -2 0 ] [ -2 2 ] [ -1 3 ] 
[ 1 3 ] [ 1 4 ] [ 0 3 ] [ -1 4 ] [ -1 3 ]] :scale 
end 
 
Try 
cg superchicken 5 
cg superchicken 2 
cg superchicken 20 
 
You may find that specifying the scale after a long list aesthetically displeasing. That’s an easypeasy 
fix. Just reverse the inputs in the procedure and recursive call.  
 
to supergrapher :scale :list  
if empty? :list [stop] 
setpos list (first first :list) * :scale (last first :list) * :scale 
dot 
supergrapher :scale bf :list  
end 
 
Now try this new and improved version! 
 
Supergrapher -10 [[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [-6 0] [-7 
3] [-5 4] [-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 
2] [-2 0] [-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -
9]]  
 
If you want to simplify this process for other users, you can create a visual slider called something 
like, magnification, on the screen (if using Lynx) and then create a button set to run a procedure, such 
as the following. 
 
to sc2 
supergrapher coordinates magnification 
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end 
 
The coordinates procedure is a reporter that just outputs the list of coordinates you’re using as an 
input to other procedures, over and over again. 
 
In this case, the coordinates are the points used to create the original tiny chicken. 
 
to coordinates output [[1 3] [2 2] [3 2] [2 1] [3 0] [2 0] [2 -4]  
[1 -6] [-1 -7] [0 -8] [2 -9] [-1 -9] [-1 -8] [-2 -7] [-3 -7] [-4 -8] 
[-2 -9] [-5 -9] [-5 -8] [-4 -7] [-7 -5] [-8 -3] [-8 0] [-6 -1]  
[-3 -1] [-2 0] [-2 2] [-1 3] [1 3] [1 4] [0 3] [-1 4] [-1 3]]  
end   
 
Magnification is the name of a slider created by: 
 

• Clicking the + sign in the Lynx tool palette 

 
 

• Name the slider, set its range, and starting value. 
 

  
 

• Next, create a new button from the same tool palette. 
• Label the button draw 
• Choose the sc2 procedure to run when the button is clicked 

 
Change the value of the slider by clicking and dragging and then click on the draw button to see what 
happens. Try this several times. 
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A version of this nonsense is online in Lynx at https://lynxcoding.club/share/NfV6z86P. 
List Processing is Universal! 
The sort of code found in grapher or supergrapher are used in countless contexts! Understand 
it and you can get the computer to work for you in innumerable ways. Here’s an example of 
manipulating computer music. 
 
Note takes two inputs, pitch & duration. 
 
Let’s say that Note 60 4 plays a C for a count of 4  
Note 62 4 plays a D for 4 counts 
Note 64 4 plays an E for 4 counts 
 
If we had a play procedure that could take a list of notes and durations, we could manipulate the 
music just like a composer! 
 
Play [[60 4] [62 4] [64 4]] 
 
to play :music 
If empty? :music [stop] 
Note first first :music last first :music 
play bf :music 
end 
 
Another version of this procedure could speed up or slow down the music, just like we did in 
supergrapher.  
 
to play :music :tempo 
If empty? :music [stop] 
note (first first :music) (:tempo * (last first :music)) 
play bf :music :tempo 
end 
 
Play [[60 4] [62 4] [64 4]] 1 
Plays at normal tempo 
Play [[60 4] [62 4] [64 4]] 2 
Plays the same notes twice as slow 
Play [[60 4] [62 4] [64 4]].5 
Plays the same notes twice as fast 
 
Can you add an input to play for transposition? Its job is to change the pitch by a numerical 
value (+ or -). 
 
Can you write a procedure that will play a list of notes and durations backwards, or in musical 
parlance, retrograde? 
 
If you get tired of typing the list of values over and over again, put the computer to work. Create a 
procedure like the following. 
 

https://lynxcoding.club/share/NfV6z86P
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to music 
output [[60 4] [62 4] [64 4]]  
end 
 
Then run the following instruction: 
play music .5 
 
or 
 
to points 
output [[-6 -9] [-6 -8] [-7 -7] [-8 -5] [-8 -2] [-6 0] [-7 3] [-5 4] 
[-4 3] [-5 3] [-5 2] [-4 0] [-3 3] [-1 4] [0 3] [-1 3] [-2 2] [-2 0] 
[-1 0] [0 -1] [0 -2] [3 -2] [3 -5] [-2 -8] [-2 -9] [-6 -9]] 
end 
 
Then run the following instruction: 
 
supergrapher 10 points or supergrapher points 10, depending on which order 
you decided to use the inputs in your procedure. 
 
The Big Idea 
Versions of the grapher/supergrapher procedure are used in music composition, encryption, codes & 
cryptography, art, and data manipulation of all kinds. If you understand these fundamental list 
processing techniques of “eating” and “smushing,” you can solve a world of problems and put the 
turtle to work for you. 



 
 

To use Turtle Art, go to 
h.p://playfulinven8on.com/webturtleart 

 
For Turtle Art resources, go to 

construc(ngmodernknowledge.com/new-turtle-
art-cards/ 

 
 

http://playfulinvention.com/webturtleart
https://constructingmodernknowledge.com/new-turtle-art-cards/
https://constructingmodernknowledge.com/new-turtle-art-cards/


Making Polygons 
Super Dooper Really Really Really Hard Challenge

Name # of sides amount of turn

Triangle 3

Square 4 90

Pentagon 5

6

7

Octagon 8

9

10 36

11

12

Change the number of sides and and amount of the turn to create the polygons.

4/16/11 Gary Stager



Turtle Art - Playing with Arithmetic
Problem 1
Create the following program:

Can you predict what it will do before you run it?

What does it do?

What happens if you change the number 1 to another number?

What happens if you change the X to +, - or / ?

Problem 2
Create the following program:

Can you predict what it will do before you run this program?

How does it work?

What happens if you replace the 1 with a larger number, say 10?

When you increase the pen color by 1, does the color get lighter or darker?

What happens if you place a repeat block at the top of the program?

Problem 3
Here’s a crazy idea!

What do you predict will happen if you combine program 1 and program 2? Snap 
them together and fine out!

© 2013 Gary S. Stager

Answer to other side
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Thinking About cheating at Tricky Pattern Blocks in Turtle Art 
 

Goal 
Write a Turtle Art procedure to draw each of the shapes in a set of pattern blocks! In other words, teach the 
turtle to draw all of the shapes in a set of pattern blocks. 
 
Suggested Strategies 
Think about the shape you want the turtle to draw  

How many sides are there? Is there a mirror image? 
 
Look for patterns  

Are any of the turns/corners ones you have seen before? 
Are all of the sides equal? Are some longer than others? If so, by how much? 

 
Try numbers you know 

Start with simple numbers for right or left turns. Numbers ending in 0 or 5 often do the trick (those are 
multiples of 5 or 10). For example, 90, 120, 30, 150, 60, 45 are some of the numbers we have used to 
turn the turtle. 

 
Hide the turtle to see if the shape is drawn perfectly 

You should not see overlapping lines or gaps in the shape. 
 
I really like when the turtle returns to where it started drawing a shape and pointed in its original direction. 
That’s why I use FORWARD RIGHT or FORWARD LEFT instead of RIGHT FORWARD or LEFT 
FORWARD. 
 
Here are two of the shapes we figured out together. Do you see any patterns? 
 

 
 
Challenge 
Figure out a way to use the shapes you created to make patterns on the computer screen with your new 
procedures. You might even think of this as creating art software for little kids to play with. 
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Turtle Art Quilt Project 

An adventure in creativity 

Yours will be much prettier of course! 
Goal 

Design one or more quilt patches that may be combined with classmates or used to create your own 
screen quilts in Turtle Art. 

Instructions 

Start with these blocks. Everyone needs to use these instructions as a common starting place. 

Each quilt project needs these fundamental building blocks 
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Design a procedure named patch1 to draw a design completely within the frame and be sure that the 
turtle returns to where it begins with the same orientation as when the procedure started. The frame 
is a square with sides of 150 turtle steps. 

Extra credit 

If you are satisfied with patch1, design procedures for new and different quilt patches. Name 
them patch2, patch3, etc… 

Each patch needs to begin with frame. 

Extreme Arts and Crafts Challenge 

Create a quilt procedure that assembles one or more of your patches into a beautiful quilt design. 
You are of course free to repeat the use of a patch or use a variety of them. 

Note: color -9999 is black in Turtle Art 

Remember 

• Save often! 
• Each patch needs to begin with frame. 

 



 

 

THE 3N PROBLEM 
Gary S. Stager 

 
SCENARIO 
You and your noted mathematician colleagues convene in Geneva to present brilliant 
theories pertaining to one of the world’s great mysteries, the elusive 3n Problem. 
 
BACKGROUND 
The 3N problem offers a fantastic world of exploration for students of all ages. The problem is 
known by several other names, including: Ulam’s problem, the Hailstone problem, the 
Syracuse problem, Kakutani's problem, Hasse's algorithm, Thwaite’s Conjecture 3X+1 
Mapping and the Collatz problem.  
 
The 3N problem has a simple set of rules. Put a positive integer (1, 2, 3, etc…) in a 
“machine.” If the number is even, cut in half - if it is odd, multiply it by 3 and add 1. Then put 
the resulting value back through the machine. For example, 5 becomes 16, 16 becomes 8, 
becomes 4, 4 becomes 2, 2 becomes 1, and 1 becomes 4. Mathematicians have observed 
that any number placed into the machine will eventually be reduced to a repeating pattern of 
4...2...1... 
 
This observation has yet to be proven since only a few billion integers have been tested. The 
4…2…1… pattern therefore remains a conjecture. 

 
The computer will serve as your lab assistant – smart enough to work hard without sleep, 
food or pay, but not so smart that it does the thinking for you. 
 
USING THE COMPUTER 

1. Point your browser to http://constructingmodernknowledge.com/3n 
a. You may edit the project or look at the code here. 

2. Click  the Test button 
3. Enter a positive integer > 0 and click OK 

 

http://constructingmodernknowledge.com/3n
https://lynxcoding.club/share/1FUYNLDL
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4. As soon as you see the pattern 4…2…1… 
appear in the data window, click the 
STOPALL button 

5. Click the Howmany button and the 
computer will count many “generations” that 
number took to reach the repeating pattern. 

6. The count will appear in the generations 
window. 

7. Think about the results. Record your data 
and test another number. 

8. Repeat steps 1-7  
 

YOUR CHALLENGE 
¨ Work with your teammates to find numbers that take a “long time” to get to the repeating 

pattern of 4…2…1… 
¨ How did you go discover a number that took a “long time?” 
¨ What is a long time? 
¨ Use any tools at your disposal to learn more about the problem and to record or analyze 

your data.  
¨ Share your hypotheses with the assembled “conference delegates.” 
¨ Defend your hypotheses. 
¨ Disprove the hypotheses of other delegates. 
 
EXTRA TOOLS TO MAKE YOU SAY, “HMMM…” 
¨ Click on the arrow taking you to the web page, http://www.stager.org/3n/3ntools.html 
¨ The first screen is similar to the 3n tools you’ve been using 
¨ Click on the Overnight button to ask your virtual lab assistant to keep track of numbers 

that take more than a specific number of generations. You may adjust the generations 
slider based on what you determine to be a “long time” and click on the Experiment button 
to specify the number you wish to start with. This tool will then try every number after the 
value you specify until you stop it. 

¨ Clicking on the Graph button will take you to a set of tools designed to graph the number 
of generations taken by each number in a series beginning with the number you specify. 
Does the graph tell a story? 

 
DEBRIEFING QUESTIONS 
¨ What did you learn from this experience? 
¨ What did you observe about the learning style(s) of your collaborators? 
¨ Which subject(s) does this project address? 
¨ What might a student learn from this project? 
¨ For age/grade is this project best suited? 
¨ What would a student have to know before successfully engaging in this project? 
 
The tools used in this activity were created using Lynx, a wonderful environment for 
multimedia authoring, modeling, robotics, animation and exploring powerful ideas. With Lynx, 
you could customize my tools or build your own. Go to lynxcoding.club for more 
information. 



	

Curated by Gary Stager – cmkfutures.com/gary 

Getting	Started	with	Wolfram	Alpha	and	Wolfram	Language	
	
Wolfram	Alpha	
	 http://wolframalpha.com	
	

In	Wolfram	Alpha,	click	on	 to	open	the	equation	in	Wolfram	Language	
	
Create	a	new	notebook	in	Wolfram	[Language]	Programming	Lab	
	 http://lab.open.wolframcloud.com/app/	
	
Fast	Introduction	to	Wolfram	Language	for	Math	Students	

http://www.wolfram.com/language/fast-introduction-for-math-students	

Fast	Introduction	to	Wolfram	Language	for	Math	Students	
																												
																http://www.wolfram.com/language/fast-introduction-for-math-students	

Fast	Introduction	to	Wolfram	Language	for	Programmers	
																	
															http://www.wolfram.com/language/fast-introduction-for-programmers	

An	Elementary	Introduction	to	Wolfram	Language	[book]	
http://www.wolfram.com/language/elementary-introduction/2nd-ed/	[ebook]	

	 http://amzn.to/2BDhf4B	[softcover]	
	
Going	from	Wolfram	Alpha	to	Wolfram	Language	-	Launching	Wolfram|Alpha	Open	Code	
	 http://blog.stephenwolfram.com/2016/12/launching-wolframalpha-open-code/	
	
Important	Articles	by	Stephen	Wolfram	
	 What	is	a	Computational	Essay?	
	 http://blog.stephenwolfram.com/2017/11/what-is-a-computational-essay/	
	
	 How	to	Teach	Computational	Thinking	
	 http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/	
	
Wolfram	Development	Platform	[for	deploying	your	Wolfram	Language	apps]	
	 https://develop.open.wolframcloud.com/app/	
	
Computational	Thinking	Project	Ideas	from	Wolfram	
	 http://www.computationinitiative.org/resources/teaching/	
	
Classic	Steven	Levy	Wired	Profile	of	Stephen	Wolfram	
	 https://www.wired.com/2002/06/wolfram/	
	
Videos	
Conrad	Wolfram’s	TED	Talk	

https://www.youtube.com/watch?v=60OVlfAUPJg	
	
Stephen	Wolfram’s	Intro	to	Wolfram	Language		

https://www.youtube.com/watch?v=_P9HqHVPeik	
	
Making	Programming	Accessible	to	Everyone	with	Wolfram	Language	

https://www.youtube.com/watch?v=ALuQzgDvr2g	
	

Stephen	Wolfram	in	Conversation	with	Howard	Gardner	at	the	Harvard	Askwith	Forum	11/6/2017	
https://youtu.be/sJronwbyFeM	

	
Stephen	Wolfram	Computational	Universe	in	the	MIT	Artificial	General	Intelligence	class	lecture	(March	2018)	
	 https://youtu.be/P7kX7BuHSFI		
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Did the math answers solve the 
original problem? Fix mistakes 
or refine by taking another turn 
around the Solution Helix.

Transform the math models 
into math answers with the 
power of computers, or by 
hand-calculating. Identify 
and resolve operational issues 
during the computation.

Prepare the questions as math 
models ready for computing 
the answer. Select from 
standard techniques or 
formulate algorithms.

Think through the scope and 
details of the problem; define 
manageable questions to tackle.

Why Use Math? Computer-Based Math (CBM)…

…is building a completely new math 

curriculum with computer-based 

computation at its heart, while 

campaigning at all levels to redefine 

math education away from 

historical hand-calculating 

techniques and toward real-life 

problem-solving situations that 

drive high-concept math 

understanding and experience.

What Is Computation?
Clearly defined procedures backed up by proven logic for transforming math questions into math answers. For hundreds of 
years, computation was limited by humans’ ability to perform it. Now computers have mechanized computation beyond previous 
imagination, scaling up to billions of calculations per second, powering math into transforming our societies. 

Go interactive with the CBM Solution Helix or get this poster at: computerbasedmath.org/helix

Because it's the most powerful way to get answers to a wide range of real-world questions. Several factors contribute to math’s 
power. One is its ability to describe a large number of apparently different situations in precise and standardized ways. Another is 
because these descriptions come with highly effective methods for working out, or “computing,” answers. Math may look cryptic 
but it’s by this “abstraction” from the problem at hand that the same methods can be reused and refined on so many different 
problems. Math also scales well. Whizz around the CBM Solution Helix in a few seconds for everyday problems like “How fast do I 
need to go?”, or apply it over years at the cutting edge of research to solve problems like “How can I make a car go 1000 mph?”
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MakeCode Arcade 
Design, program, and play your own 
video games on the screen or handheld 
device. 

1. Go to arcade.makecode.com/
2. Try one of the tutorials
3. Embellish or improve the game
4. Play it on the screen or download it to a

handheld game system like the
Meowbit.

Go to https://inventtolearn.com/program-
your-own-gameboy/ for hardware and 
software resources

MicroBlocks 
Microblocks is an ingenious live-coding 
block-based programming environment 
you should experience. 

1. Go to microblocks.fun
2. Follow the Getting Started instructions
3. MicroBlocks looks a lot like

MakeCode. How is it different?
4. What are some advantages of live-

coding?

You may also explore programming the 
micro:bit in Scratch. Go to scratch.mit.edu/
microbit to get started.

For the ultimate learning adventure, attend

CONSTRUCTING MODERN KNOWLEDGE 

July 11-14, 2023

constructingmodernknowledge.com

Turtle Art 
Block-based Logo dialect focused on 
communicating geometric and 
computational ideas to the computer in 
pursuit of creating beautiful art. 

1. Turtle Art software -
playfulinvention.com/webturtleart

2. Visit the Turtle Art resources section of
inventtolearn.com/turtleart for links to
software, activity cards, and teaching
ideas.

Wolfram Language 
May just be the future of computing, 
already powering most serious scientific 
and mathematical research. Infinite and 
untapped potential. Wolfram Language 
powers Wolfram Alpha & Mathematica. 

1. Go to inventtolearn.com/wolfram for
getting started tutorials, resources, videos,
and links to the software.

More computational possibilities to explore

Continue learning long after the workshop with resources found at inventtolearn.com/questions.


Email gary@stager.org or sylvia@inventtolearn.com to schedule school-based professional 
development opportunities.

© 2023 Constructing Modern Knowledge, LLC
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A Math Game Only a Mother Could Love
© 2012 Gary S. Stager, Ph.D.

Version 1

Create two textboxes on the Lynx page. One should be named, Correct and the 
other should be named Incorrect.

to number1 
output random 11
end

Number1 will report a random number between 0 and 10. If you want a number 
from 1-10, you say output 1 + random 10

to number2
output random 11
end

number1 or number2 may be different in case you want to practice one times 
table or another.

If you wish to practice a particular “table” change the number1 procedure to 
output 5, if you want to practice your 5 times tables.

Try this line a few times and see what it does.
Show (list number1 "* number2)

It should make a multiplication problem

to quiz
askquestion (list number1 "* number2)

end

to askquestion :problem
question :problem
ifelse answer = run :problem [setcorrect correct + 1] 
[setincorrect incorrect + 1]
end

Can you add an announcement with ANNOUNCE, sound-effect or animation 
when the user answers correctly or incorrectly?



to game
setup
repeat 10 [quiz]
end

to setup
setcorrect 0
setincorrect 0
end

Can you figure out a way to randomly select the arithmetic operation [+ - * /] ? 
Hint: PICK may be useful here.

Can you figure out a way to display a score (perhaps based on percentage of 
correct answers) on the page? Hint: You'll need a score textbox.

GAME is the superprocedure that makes everything work. You may wish to make 
a button to run the GAME instruction.

Version 2 - Timed game

Change the following procedures

to game
setup
resett
repeat 10 [quiz]
end

resett resets the program’s clock to 0.

to quiz
if timer > 600 [Announce [Time’s up!] stopall]
askquestion (list number1 "* number2)
quiz
end

timer counts in tenths of a second. So, 10 = 1 second. 600 = 1 minute. You 
may use any number you wish in the quiz procedure.

The quiz procedure now runs over and over again until the time is up and then 
stopall stops all processes.



Introduction to Lynx Words, Lists and Ciphers 
Gary Stager, Ph.D.

Words in Lynx begin with quotation marks as in:

show “Gary

Lynx lists are a collection of words or other lists, such as:

show [lemon grape [apple pie] strawberry]

The list above has 4 elements, 3 words and 1 list. A good deal of computer programming involves taking things 
apart and putting things together. In this activity, we will take things apart.

1) ASCII is a reporter. Try typing the following in the command center:

show ascii “a
show ascii “e
show ascii “z

What does ASCII do? ______________________________________

2) CHAR is another reporter. Try the following in the command center:

show char 97
show char 98
show char 111

What does CHAR do? _____________________________

If ascii “a = 97, how can we change that number to equal 1?

3) Try the following in the command center:

show first “apple
show last “apple

What does the reporter, first, do?

What does the reporter, last, do?

4) Predict what each of these instructions will do before you try them.

show first [apple peach pear]
show last [apple peach pear]
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How accurate were your predictions?

5) What do you think will happen if you type the following? Make a prediction and then run the instructions in 
the command center. Write the results next to the instruction.

show first first [apple peach pear]
show last first [apple peach pear]
show first last [apple peach pear]
show last last [apple peach pear]

How accurate were your predictions?

6) Predict the result of the following instructions before typing them into the command center. Write the results 
next to the instruction.

show bf “lemon
show bl “grape
show bf bf “grape
show bl bf “grape
show bf bl “grape
show bl bl “grape

What does bf do? _________________________

What does bl do? _________________________

7) Predict the result of the following instructions before typing them into the command center. Write the results 
next to the instruction.

show bf [apple grape peach]
show bl [apple grape peach]
show bf bf [apple grape peach]
show bl bf [apple grape peach]
show bf bl [apple grape peach]
show bl bl [apple grape peach]
show bf bl [apple grape peach]

8) Predict the result of the following instructions before typing them into the command center. Write the results 
next to the instruction.

show first bf “grape
show first bl “grape
show last bf bf [apple grape peach]
show first bl bf [apple grape peach]
show first bf bl “grape
show first bl bl “grape
show last bf bl “grape
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9) Type this procedure in the procedures center:

to eat :thing

show first :thing
eat bf :thing
end

Try running the procedure above by typing the following in the command center:

eat “lemon
eat [apple peach grape lemon]

An error message, first does not like  as input in eat, is generated. It means that the procedure tried to 
grab the first thing out of nothing after you ate all of the other items in the word or list. Therefore, we need a 
common instruction, called a stop rule added to the procedure.

Change the eat procedure in the procedures center to include the the stop rule (beginning with IF)

to eat :thing
if empty? :thing [stop]
show first :thing
eat bf :thing
end

Try running the procedure above by typing the following in the command center:

eat “lemon
eat [apple peach grape lemon]

Is the error message gone?

10) Caesar’s Cipher Level 1

to caesar :word
if empty? :word [stop]
show (ascii first :word) - 96
caesar bf :word
end

Try running the procedure above by typing the following in the command center:

caesar “touchdown!
caesar “school

11) Think about how we should improve our cipher program!
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! Gary’s!Fraction!Challenge!
!

Make!a!procedure!called!PIE!that!will!divide!a!circle!into!a!fraction!indicated!by!two!
inputs!to!the!procedure,!PIE.!!Below!are!some!procedures!to!get!you!started.!
!
Fraction 2 3 
 
to rectangle 
pd  
repeat 2 [fd 50 rt 90 
fd 300 rt 90] 
end 
 
to rec :length 
repeat 2 [fd 50 rt 90 fd :length rt 
90] 
end 
 
 
to fraction :n :d 
rectangle 
repeat :d [rt 90 fd 300 / :d lt 90 
fd 50 bk 50] 

lt 90 fd 300 rt 90 
repeat :n [fillit pu rt 90 fd 300 / 
:d lt 90] 
rt 90 
bk :n / :d * 300 lt 90 
end 
 
to fillit 
setc "red 
pu 
rt 45 
fd 2  
fill 
bk 2 
lt 45 
setc "black 
end 

 
 
Or,!in!this!version,!you!would!type!!fraction 400 3 5!to!draw!a!rectangle!with!a!
length!of!400!divided!into!3/5!
!
to rectangle :length 
pd  
repeat 2 [fd 50 rt 90 
fd :length rt 90] 
end 
 
to rec :length 
repeat 2 [fd 50 rt 90 fd 
:length rt 90] 
end 
 
to fraction :l :n :d 
rectangle 
repeat :d [rt 90 fd :l / :d 
lt 90 fd 50 bk 50] 
lt 90 fd :l rt 90 

repeat :n [fillit pu rt 90 
fd :l / :d lt 90] 
rt 90 
bk :n / :d * :l lt 90 
end 
 
to fillit 
setc "red 
pu 
rt 45 
fd 2  
fill 
bk 2 
lt 45 
setc "black 
end 

!
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Logo Quilt Project 

An adventure in creativity using Lynx 

 
Yours will be much prettier of course! 

 
Objective 
You will each contribute to a collaborative quilt, programmed in Logo and drawn by the turtle. This is a classic 
Logo project modified to use a new web-based dialect of Logo called Lynx. (http:// lynxcoding.club) 
 

1 2 3 
 
Quilting as a craft or art form dates back to ancient Egypt. Quilt making was not only functional as a way of 
manufacturing blankets, but a collaborative form of expression embraced by Native American, African 
American, and Amish communities in the United States dating back hundreds of years. There are many styles 
of quilts, but the combining of different fabric scraps or pieces of uniform size combined to create elaborate 

 
1 "quilt" by Enid H. W. is licensed under CC BY-NC 2.0 
 
2 "quilt top" by madelinetosh is licensed under CC BY-NC-ND 2.0 
 
3 "Alphabet quilt" by tirralirra is licensed under CC BY-NC 2.0 
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geometric patterns lends itself to Logo programming (and constructionism). Quilting traditions may be found 
in cultures across the globe.  
 
In this project, each of you will be responsible for creating at least one “patch” that will then be shared with 
your peers. Each of you will then take some of those square patches and assemble a quilt made of them. 
 
Getting started with Logo 
 
The turtle is a metaphor for yourself. When you give it instructions, the turtle does exactly what you tell it to 
do. If your instructions were inaccurate or wrong, you will either receive an error message or the result of your 
instruction will be different than what you anticipated. In either case, you need to debug. 
 
The words built into the Logo vocabulary are called primitives. Multiple instructions may be run in sequence 
from the command center of Lynx as long as there are spaces between the words and numbers. 
 
One of the powerful ideas of Logo is that once you figure out how to do something, you can “teach Logo” or 
“teach the turtle” a new word that remembers that sequence of instructions. These new words are called 
procedures. Procedures behave exactly like primitives except they are unique to a particular project. In other 
words, user created procedures are available to use as long as they are defined in that project (file). 
 
Procedures are defined in the procedure pane in Lynx. They always begin with the word, TO, and end with the 
word, END. Capitalization is never an issue in Logo. 
 
For example, type foo in the Command Center and Logo will present the error message, I don’t know how to 
foo. 
 
We can define foo by typing the following instructions: 
 
to foo 
fd 57 rt 144 
end 
 
Now type cg pd foo in the command center and hit enter/return. 
 
CG clears the screen and puts the turtle in the center of the screen. PD puts the turtle’s pen down. The turtle 
has a pen stuck in its belly button and when it is down and you command it to move, it leaves a trail. FD is the 
command for forward and it takes a number of turtle steps as its input. 
 
Think of procedure names as infinitive verbs. They produced action when used in Logo. 
 
Procedures and primitives may be combined to create new procedures. Procedures are like building blocks 
that perform a function and may be combined in infinite variety to produce complexity. Procedures used in 
other procedures are sometimes called subprocedures.  There is no limit to the number of procedures you 
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may write. They just all need to be typed in the Lynx procedure pane and follow the rule of beginning with to 
and ending with end. 
 
Next, add the following procedure to your procedure pane. 
 
to foobar 
repeat 5[foo] 
end 
 
Run foobar in the command center. What happened? What does repeat do? 
 
Writing and Running Procedures 
A procedure is a list of instructions with a name. All procedures begin with to and end with end. 
 

 
 
The order in which procedures are created in the procedure pane does not matter as long as all of the 
procedures are formatted properly, beginning with to and ending with end. Putting a blank line 
between procedures makes them easier to read and debug.  
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Let’s start programming! 
 

1) Each of you must open Lynx, start a new project, name the project, and then type the following 
procedure into the procedures area. 

 
to frame 
setcolor “black 
pd 
repeat 4 [fd 100 rt 90] 
end 

 
Can you predict what this procedure will do before running it in the command center? 
 
A list of colors the turtle knows may be found here. 
 

2) Next, create a new procedure that is named with your name and perhaps a number (in case you create 
more than one patch). Each patch will begin with the command, frame. Then you will tell the turtle 
what to draw within the constraints of the patch (square).  

 
For example: 
 
to gary1 
frame 
 
end 

to jose 
frame 
 
end 

to yumi 
frame 
 
end 

 
Important rule! 
Everything the turtle draws in your patch must be within the square AND the turtle must return to where it 
began facing in the same direction. Returning to where you began is called state transparency in computer 
science. It is important for making the patches flexible and portable in this project. 
 

3) Use cg patch and then a series of commands in the command center to design a pattern within the 
square and return the turtle to where it began. Then copy and paste those instructions into a new 
procedure, for example: 
 
to maria1 
frame 
rt 45 fd 50 bk 50 lt 45 
end 
 

4) Create as many quilt patches as you can design. Be sure that each procedure has a unique name. 

5) Save your project to the cloud by clicking on the  button in Lynx. 
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6) Copy and paste your procedures (as text) and share them with your friends via email or posting in a
collaborative space. 

Make a Quilt! 
1) Copy and paste the procedures from your friends into your Lynx procedures. (Make sure that there are

no duplicate procedure names. Rename some if necessary. You will only need one patch procedure
since you are all starting with the same one.

2) Try your friends’ procedures and see how they look.

3) Decide which of these patches you wish to assemble into your own quilt.

4) Figure out how to assemble the quilt using the patch procedures and other turtle graphics commands.

5) You should use at least four patches in a quilt.

6) Write a new quilt procedure to automatically draw your new quilt!

7) Save your work to the cloud.

8) Share the project with friends by clicking on the  button and sharing the URL via email or 
collaborative space.
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Here is a sample Quilt project 

All of these procedures should be in the Lynx procedure pane if you wish to try our sample quilt 
to frame 
setcolor “black 
pd 
repeat 4 [fd 100 rt 90] 
end 

to sylvia1 
frame 
setc “red 
pu  
rt 90 
fd 30 
left 90 
pd 
repeat 4 [fd 40 rt 90] 
left 90 
pu 
fd 30 rt 90 
end 

to sylvia2 
sylvia1 
pu setc “blue 
rt 90 fd 100 
rt 180 
sylvia1 
pu 
fd 100 rt 90 
end

to quilt 
repeat 4 [sylvia2 rt 90] 
rt 90 pu fd 100 left 90 
sylvia3 
rt 90 sylvia1 left 90 
end 

to sylvia3 
frame 
pu  
fd 50 rt 90 fd 50 
repeat 360 [pu fd 50 pd fd 0 pu back 50 rt 
1] 
back 50 rt 90 fd 50 right 180 
end 

Quilt is the superprocedure that assembles the quilt you design. 

Challenges 

• Use one patch procedure as a subprocedure in others.
• What sorts of optical or geometric illusions can you create by just rotating a patch?
• How many patches can you get on the Lynx screen?
• Try the same project with larger or smaller patches.
• Could you program the computer to create random quilts?

Aesthetic tweak 

Replace your existing frame procedure with this slightly improved version. What does it do differently? 

to frame 
setcolor “black setpensize 3 pd 
repeat 4 [fd 100 rt 90] 
setpensize 1 
end
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Turtle Cheat Sheet 
 
Here are some turtle graphics primitives to get you started. 
 
Notes:  

• # is the sign for inserting a number as the input to a command 
• Be sure to use spaces between words and numbers! 
• Refrain from using setpos. That command makes it hard to move, reorient, or resize quilts. 

 
Forward # 
FD # 
For example, fd 50 

Back # 
BK # 
 

Right # 
RT # 

LEFT # 
LT # 

CG  
clear graphics 
Clears the screen and puts 
the turtle at the center 

Clean 
Clears the screen, but 
leaved the turtle 
where it is 

PU 
Pen up 

PD 
Pen down 

REPEAT # [list of commands] 
For example, repeat 4[fd 62 rt 90] 

SETC # 
set color 
SETC 57 
SETC “black 
SETC “red 

 

SETPOS [# #] 
For example:  
setpos [10 20] 
setpos [-25 10] 
setpos [-10 -20] 
setpos [20 -25] 

SHOW POS  
Displays the current position of the turtle (in coordinates) 
in the command center 

SHOW 3 *4 
Shows the product of 3 and 4 in the command center. This is the same as asking the turtle to multiple 3 X 4 
 
Show runs a reporter or operation and displays the result in the command center. 

 
Final Thought 
 
Collaborative expression composed of personal elements created by communicating mathematical ideas to 
the computer within an extremely open-ended structure makes this project an important “object-to-think-
with” for educators. 
 
Resources 
 

• Lynx web site 
• Getting Started with Lynx manual 

 



  
 

The next several project ideas were 
written decades ago in LogoWriter, 
an ancestor of Lynx. You may use 
Lynx by pointing your browser to 

http://lynxcoding.club. 
 

The code should work with little to 
no modification. 

 
 

http://lynxcoding.club/
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to OQj^D Dollar Words 
f By Gary S. Stager 

(Idea by Marilyn Bums) 

How many dollar words can you think of? What do you mean that you don't know what a dollar word is? 

A dollar word is a word in which the sum of it's individual letters equals $1. 

Here is how it works... The letter "A" is worth U, "B" = 2<t, "C" = 3*. "Z" = 260, etc... 

Type these three short procedures (below) on the flip-side of a LogoWriter page. Be sure to name the page! 

In order to find out the value of a word (using the "Dollar Word" rules), type SHOW VALUE "theword (the-
word should be replaced with the word you wish to evaluate). 

SHOW VALUE "Gary 
$0.51 
SHOW VALUE "ELEPHANTS 
$1 

How many dollar words can you think of? 

What is the shortest possible word that could be worth $1? What is the longest? Can you think of some quarter 
words? How about some dime words? 

The Procedures: 

to value :word 
output word "S (getvalue :word) / 100 
end 

to getvalue :word 
if empty? :word [op 0] 
output (ascii.value (first :word)) + getvalue bf :word 
end 

to ascii.value :character 
if (ascii rcharacter) > 96 (output (ascii :character) - 96] 
if (ascii '.character) > 64 (output (ascii rcharacter) - 64] 
output ascii :character 
end 

Check and see if a word is worth $1. 

Type: 
SHOW DOLLAR? "GARY 
False 
SHOW DOLLAR? "ELEPHANTS 
True 

to dollar? :word 
output 100 = getvalue :word 
end 

Make a tool to evaluate words worth 

Optional Procedures 
different amounts of money 

to worth :word :value 
output rvalue =• getvalue 
:word 
end 

to quarter to nickel 
output 25 output 5 
end 

to dime 
output 10 
end 

end 

to do l lar 
output 100 
end 

SHOW WORTH "GARY QUARTER 
FALSE 

©1991 Gary S. Stager 
N.A.M.E. 
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L O G O )u\T0K S Palindromes 
* w ^ * * miuu^s By Gary s Stager *$#2K> 

A palindrome is a word or number in which it's characters or digits are the same backwards and forwards. Bob 
and 1221 are both examples of palindromes. 

In this activity we will focus on numerical palindromes. 

Any number can eventually become a palindrome by applying a simple function. If a number is not a palindrome, 
add the reverse of the number to the number itself. Repeat this process until the sum of the two numbers becomes 
a palindrome. 

157 is not a palindrome, so... 

157 
+ 751 

908 is not a palindrome, so repeat the process... 
+ £Q2 

1717 is not a palindrome, so repeat the process... 
+7171 
8888 is a palindrome! 

It took four generations to make the number, 157, into a palindrome. All numbers will eventually become a 
palindrome, but some take longer than others. What kind of numbers are more likely to take several iterations to 
become palindromes? Do odd numbers take longer? Do prime numbers take longer than composite numbers? 

Test your hypotheses and collect data using the following LogoWriter procedures. 

The Procedures 

The first procedure we need is a simple recursive operation for reporting the reverse of a word (or number) 

to reverse :word 
if empty? :word [output :word] 
output word las t tword reverse bl :word 
end 

The first set of palindrome procedures work as a command - printing the number of generations it takes for a 
number to become a palindrome. 

TO PALINDROME :NUMBER 
PRINT (SENTENCE :NUMBER [IS A] FIND.PALINDROME :NUMBER 1 [GENERATION PALINDROME]) 
END 

to find.palindrome :number :counter 
if :number - reverse :number [print :number output :counter] 
print :number 
output find.palindrome (:number + reverse :number) xounter + 1 
end 

Type Palindrome 157 
157 i s a 4 gene ra t i o n palindrome 

to try.numbers :s tar t :finish 
if :s tar t > :finish [stop] 
palindrome :s tar t 
try.numbers :s tar t + 1 :finish 
end 



Type Try. numbers 150 160 to printout palindrome information for the numbers 150-160. 

Second Palindrome Problem 

The second palindrome procedures use the same reverse procedure and function as a reporter. Palindrome now 
takes a number as input and reports the number of generations it takes before the number becomes a palindrome. 
Remember that since this new palindrome procecdure is a reporter, it must be preceded by a command. Put these 
procedures on a new page! 

SHOW PALINDROME 157 
3 

TO PALINDROME :NUMBER 
OUTPUT FIND.PALINDROME :NUMBER 1 
END 

to find.palindrome :number '.counter 
if :number • reverse :number [output :counter] 
output find.palindrome (:number + reverse :number) :counter + 1 
end 

to reverse :word 
if empty? :word [output :word] 
output word last :word reverse bl :word 
end 

An Overnight Problem 

The following Record procedure records all of the numbers that take more than two (2) generations to become ;i 
palindrome. Two generations was arbitrarily chosen. You may wish to change this number in the Record 
procedure. 

to record :start :finish 
if :start > :finish [stop] 
make "generations palindrome :start 
if :generations > 2 [print sentence :start :generations] 
record :start + 1 :finish 
end 

Type RECORD 1 100 to record all of the numbers between 1 and 100 which take more than 2 generations to 
become palindromes. 
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experimental Math AetMtlaa In LogoWrltar 

Thinking Scientifically in Logo 
Experimental Math Activities 

By: Gary S. Stager 
3N Problem 

Input a number and if the number is even cut it in half, 
otherwise multiply the number times 3 and add 1. 

Any number inputted will eventually create an infinite 
pattern of 4 2 1...4 2 1... 

t o 3n :number 
pr :number 
i f e l s e even? :number 

[make "number :number / 2] 
[make "number (:number * 3) + 1] 

3n :number 
end 

to even? :number 
op member? last :number [ 0 2 4 6 8 ] 
end 

Type: 3H some number 
to start the experiment 

Controlling the Experiment 

EXPERIMENT2 STARTS AT .-number and PRINTS 
ALL OF THE NUMBERS THAT TAKE MORE 
THAN 50 TRIES TO REACH 4 2 1 . . . 

to experiment2 :number 
make "result (3.M tNUMBER [9 9 9] 1) 
if :result > SO [pr (se :number :result)] 
experiment2 :number + I 
end 

Graph the Number of Tries Before 4 2 1 appears 

EXPERIMENT STARTS AT .number and GRAPHS 
HOW LONG IT TAKES TO REACH 4 2 1... 

Type: SETUP EXPERIMENT baglxmlng t 

TO EXPERIMENT :NUMBER 
IP :NUMBER > 40 [STOP] 
GRAPH (3N :NUMBER [9 9 9] I) - 1 
EXPERIMENT :NUMBER + 1 
END 

TO GRAPH :COUNT 
TIMES :COUNT 
TAB PR :COUNT 
PR [1 
END 

TO 3N : NUMBER : COUNT Page 1 
IF :NUMBER - 4 [OP tCOUNT] 
PR tNUMBER 
XFELSE EVEN? tNUMBER 

[MARE "NUMBER :NUMBER / 2 ] 
[MAKE "NUMBER (:NUMBER * 3) + 1] 

OP 3N tNUMBER tCOUNT + 1 
END 

TO 3.N :NUMBER {COUNT 
IF :NUMBER - 4 [OP :COUNT] 
IFELSE EVEN? tNUMBER 

[MAKE "NUMBER :NUMBER / 2 ] 
[MAKE "NUMBER (:NUMBER * 3) + 1] 

OP 3.N tNUMBER '.COUNT + 1 
END 

TO EVEN? :NUMBER 
OP MEMBER? LAST tNUMBER [ 0 2 4 6 8 ] 
END 

TO SETUP 
CG 
PU HT 
SETPOS [-138 -75] 
SETH 0 
MAKE "DATA.LIST [] 
END 

TO TIMES tNUMBER 
SETY tNUMBER + -75 
MAKE "DATA.LIST LPUT :NUMBER :DATA.LIST 
PD 
FD' 0 
PU 
MOVE 
END 

TO MOVE 
PU 
SETY -7S 
SETX XCOR + 7 
END 

Triangular Fractal 

Put three points anywhere on the screen. Randomly 
choose one of the points and go from where you (the 
turtle) currendy are half the distance to the randomly 
chosen point Repeal this process indefinitely. 

Type: SETUP GO 

to setup 
eg 
aetc 4 
put.dots 0 2 
end 
to put. dots : start : l imit ©1989 Gary S. Stager 
i f :start > :l imit [stop] 



Experimental Math Activities In LogoWriter 
pu 
setpos list (139 - random 278) (80 - random 
160) 
dot 
make :start pos 
put.dots :start + 1 :limit 
end 

to go 
setc 1 
find.dot thing random 3 
go 
end 

to find.dot :pos 
seth towards :pos 
pu 
fd (distance :pos) / 2 
dot 
end 

to distance :pos 
output sqrt (sq (xcor 
(ycor - last :pos)) 
end 

to sq :number 
op :number * :number 
end 

to big.one 
eg 
pu 
setc 4 
setpos [-120 -60] 
dot 
make 0 pos 
setpos [0 60] 
make 1 pos 
dot 
setpos (120 -60] 
make 2 pos 
dot 
go 
end 

to dot 
Pd 
f d 0 
pu 
end 

to go2 :limit 
find.dot thing random :limit 
go2 : limit 
end 

Co setup2 :limit 
eg 
setc 4 

- f i r s t :pos)) + (sq 

- 1 

put.dots 0 : l imit - 1 Pagt 2 
end 

The Tee Cream Scnop Problem 

The following experiment was inspired by.a visit to a fourth 
grade classroom. There was a floor-to-ceiling'high chart 
containing pictures of ice cream cones. When I inquired about the 
chart I was told that the students' problem solving book posed 
the following problem, " / / you had 17 scoops of ice 
cream and an unlimited number of single, double & 
triple dtp cones, can you make a chart of the 33 
possible combinations of cones based on 17 
scoops?" I found the problem intriguing although the activity 
posed to the students could have been done with brute force by a 
gorilla. My question was, "Why does 17 scoops generate 33 
combinations?'' 

If you have X scoops of ice cream and an unlimited 
supply of single, double, and triple dip cones, how 
many possible combinations of servings can you 
make? 

Type: ICE.CREAM ( s t a r t i n g # of scoops) 
(limit § ot scoops) (number ot kinds 
ot conns) 

This first experiment prints out all of the possible 
combinations for a given number of scoops. 

TO ICE.CREAM :START :LIMIT :SCOOPS 
PR [T\ D\ S] 
SCOOPLIST :START :LIMIT :SCOOPS 
END 

to scooplist :total :limit :SCOOPS 
if :total > :limit [stop] 
make :total tryeach 0 :SCOOPS :total 
PRINTLIST THING :TOTAL 
pr (se [There are] count thing :total 
[number of combinations of] :total "scoops) 
make "data, list lput list : total count 
thing :total :data.list 
scooplist :total + 1 :limit :SCOOPS 
end 

to tryeach :howmany :scoops : total 
i f :scoops - 1 [ op ( l i s t ( l i s t r total ) ) ] 
i f (:howmany * :scoops) > : total [op []] 
op se fputal l :howmany tryeach 0 :scoops -
1 : t o t a l - :howmany * :scoops tryeach 
rhowmany + 1 :scoops : total 
end 

to fputall :first :list 
if empty? :list [op []] 
op fput fput : first first 
:first bf :list 
end 

:list fputall 

©1989 Gary S. Stager 



experimental Math Activities In LogoWriter 

to p r i n t l i s t - . l ist 
i f empty? t l i s t [stop] 
pr las t : l i s t 
p r i n t l i s t b l : l i s t 
end 

•to startup 
make "data . l i s t [] 
end 

acooplist 
end 

: to ta l + 1 : l imit Page 3 

A Sample of the results generated bv typing... 

ICE.CREAM 1 5 3 

T D S 
0 0 1 
There are X nunber of combinations of 1 scoops 
0 1 0 
0 0 2 
There are 2 number of combinations of 2 scoops 
1 0 0 
0 1 1 
0 0 3 
There are 3 number of combinations of 3 scoops 
1 0 1 
0 2 0 
0 1 2 
0 0 4 
There are 4 number of combinations of 4 scoops 
1 1 0 
1 0 2 
0 2 1 
0 1 3 
0 0 S 
There are S number of combinations of S scoops 

The following experiment prints just the number of 
scoops and the number of possible combinations so 
that we can analyze that data without the clutter of the 
actual combinations 

Type: SAVEMEMORY ( s tar t ing # ot scoops) 
limit 

to savememory :total : l imit 
i f : tota l > : l imit [stop] 
i f member? las t : tota l [0] [savepage bottom] 
clearname :total - 1 
recycle 
startup 
scooplist : total : tota l 
insert se char 32 :da ta . l i s t 
savememory :total + 1 : l imit 
end 

to scooplist :total :limit 
if :total > :limit [stop] 
make :total tryeach 0 3 :total 
make "data, list lput list : total count 
thing :total :data.list 

to tryeach :howmany :scoops :total 
if :scoops - 1 [ op (list (list :total))] 
if (thowmany * :scoops) > :total [op []] 
op se fputall thowmany tryeach 0 : scoops -
1 :total - :howmany * :scoops tryeach 
thowmany + 1 :scoops :total 
end 

:list fputall 

to fputall :first :list 
if empty? :list [op (]] 
op fput fput : first first 
:first bf :list 
end 

to printlist :list 
if empty? tlist [stop] 
pr last :list 
printlist bl :list 
end 

to startup 
make "data.list (] 
end 

ASanrclcofthcresuUs,.. 
[11][22j [3 31 [441 [551[671[78] 
[8 10] [9 12] [10 14] [11 16] [12 19] [13 21] 
[14 24] [15 27] [16 30] [17 33] [18 37] [19 40] 
[20 44] [21 48] [22 52] [23 56] [24 61] [25 63] 
[26 70] [27 75] [28 80] [29 85] [30 91] [31 96] 
[32 102] [33 108] [34 114] [35 120] [36 127] [37 13d] 
[38 140] [39 147] [40 154] [41 161] [42 169] [43 176] 
[44 184] [45 192] [46 200] [47 208] [48 217] [49 225] 
[50 234] [51 243] [52 252] [53 261] [54 271] [55 280] 
[56 290] [57 300] [58 310] [59 320] [60 331] [61 341] 
[62 352] [63 363] [64 374] [65 385] [66 397] [67 408] 
[68 420] 
©1989 Gary S. Stager 
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The World's Greatest 
LogoWriter Function 

Microworld 
01987 Gary S. Stager 

SDirtafS 

At the 19o7 East Coast Logo 
Conference, E. Paul Goldenberg 
presented some ideas for 
learning the concept of functions 
or mathematical operations in 
Logo. I was as always inspired 
by his presentation and decided 
to spend the next few days 
(sleeplessly) extending and 
embellishing the ideas put forth 
byPauL 

Paul Goldenberg suggested that 
students could concretize and 
understand the concept of 
mathematical functions by being 
presented with sufficient tools 
that would allow them to explore 
' the same problem in a number of 
.domains. His Logo examples 
demonstrated how a function 
could be manipulated through 
the use of "mathematical 
sentences" and graphs. 

My intent was to create a Logo 
microworld in which the notion 
of mathematical functions could 
be explored by students of all 
ages , not just in two domains 
(sentences and graphs), but in at 
least four domains. This allows 
students, regardless of divergent 
learning styles to find a 
comfortable medium for 
conceptualizing these concepts. 
The four sets of tools present in 
this LogoWriter Function 
Microworld are. Mathematical 
Sentences, Graph Tools, X/Y 
Table Tools, and Function 
Machines. 

In the spirit of a Logo 
microworld, all of these tools are 
extensible, self-correcting, 
inheritandy interesting (I hope!), 
non-threatening, and contain 
powerful ideas. The student(s) 

has complete control over the 
environment and .enough 
memory to build his/her 
functions — The entire 
microworld and student 
procedures fits comfortably in 
4K of memory! 

The following is a short 
narrative on how a problem may 
be explored and potentially 
solved by a child or group of 
children using this microworld. 
All four aspects of the software 
will be illustrated, but it is by.no 
means necessary to work in all 
four domains every time you 
wish to explore with the 
microworld. The order for using 
the particular tools is also 
inconsequnetial. I have also 
included a lesson plan for a 
game which I spontaneously 
created while working with a 
group of elementary students. I 
call the game "Battle of the 
Functions" and the kids love 
playing it. "Battle of. the 
Functions" turns out to be a very 
nice supplementary activity for 
using this LogoWriter Function 
Microworld. fc* 

(letting Started: 

1) Load LogoWriter into your 
Apple. (Sorry I haven't typed 
the procedures in other versions 
yet) 
2) Insert your Project Scrapbook 
Disk Volume into the disk drive 
and press ESCAPE 
3) Select the FUNCT.WORLD 
page by using the arrow keys to 
pace the cursor on this page and 
press RETURN. 
4) Wait a few seconds while the 
tool procedures "sneak" into 
memory. 
5) When the cursor is blinking in 
the command center it is 
probably a very good idea to 
rename your page so that the 
original procedures on the 
flip-side are not destroyed! 

Type 
NAHE9AG8 -pmgvnnmm 

6) Either the student(s) or 
teacher should then flip the page 
to the flip-side and delete any 
unwanteofunctions (mathematical 
operations) and create their own, 
depending on their age, ability, 
and what they are studying. 

Creating a Logo Function! 

The power of this microworld 
lies in its flexibility. First 
graders (or their teachers) or 
precalculus students in high 
school can create appropriate 
mathematical functions by using 
the. same simple structure. 

^Remember, all LogoWriter 
•'procedures are written on the 
Flip.-side of the page. Hit 
Appie-F to flip the LogoWriter 
page to the flip-side. 

All Functions in this 
Microworld Have One 

Numerical Input and One 
Numerical Output! 

This includes the ability to use 
mathematical primitives or tools 
already in LogoWriter. For 
example, +, -, /, *, SQRT, 
DISTANCE, TOWARDS, ABS, 
INT, SIN, COS, ROUND. 
etc... 

Elementary Functions 

TO 2PLUS :NOMBER 
OP tNUMBER + 2 
END 

TO ADDS tNUMBER 
OP tNUMBER -I- S 
END 

TO DOUBLE tNUMBER 
OP tNUMBER * 2 
END 

TO SPLIT tNUMBER 
OP tNUMBER / 2 
END 

Note: The CIRCUMFERENCE 
function uses two other 

http://by.no


functions, PI and DIAMETER in 
calculating a value. 

- T. Mathematical Sentences; 

Once you have created some 
mathematical f u n c t i o n 
procedures, you can solve word 
problems by stacking up these 
functions and providing a 
numerical input. This can be 
done either in the Command 
Center or in a LogoWriter 
procedure. The mathematical 
functions are calculated from 
right to left The metaphor is that 
a number is being dropped into a 
function machine and the result 
is dropped into the proceeding 
function machine until a final 
value is outputted. 

Fnr Example? 

SHOW DOUBLE DOUBLE DOUBLE 
ADDS 5 
80 

is the answer outputted 
This is the same as saying 
(5 + 5 )*2*2*2 

SHOW TUPLE ADD5 MXNOS7 
SPLIT TXMBSS SQUARE 2 
24 

is die answer outputted 
This is the same as saying 
«(((2*2)*5)/2)-7) + 5)*3 
Nj21&: This is a good time to play 
the "Battle of the Functions" 
game. 

Problems may be posed by the 
student or the teacher and can 
their results can be explored in 
the mathematical sentence, 
graph, table, or machine 
domains. For ' the sake of 
discussion, we will cry to 
answer a problem that may be 
puzzling to some young studems 
(or adults). 

Is the output of... 

DOUBLE ADDS 10 

equal to. 

10 ADD5 DOUBLE m 
You may explore mis problem in 
the way described above or in 
any of the following ways: 

Graph loalas 
If you have already figured out 
that the two equations are not 
equal, the following question 
may be asked: 

Is there ANY nunber which can 
be inputted into both equations 
and give the same output? 

One way to find a solution to 
this problem is to graph the 
equations. This set of tools 
plugs in numbers from -80 to 80 
and plots the points which are on 
the screen. The .first problem 
would be addressed as: 

Y - ( X + 5)*2 

X is the number plugged in by 
LogoWriter and the point plotted 
is me coordinate pair of PCY]. 

IT, Using the Graph TQQIS; 

DType 
CG CT 
2)Type 
GRID 

this draws the X Y axis 
3) You may then select two 
scales for the graph; WIDEANGLE 
or CLOSEUP 
WIDEANGLE makes each notch 
on the axis equal 10 -and 
CLOSEUP makes each notch on 
the axis equal 1. 
WIDEANGLE is the default scale. 

4) Type 
GRAPH [DOUBLE ADDS 

or... 

Type 

:X] 

GRAPH [ 3 * :JC / 2 ] 
ETC.. 

5) :X must be included in the 
brackets of any function you 
wish to graph. Any function you 
or others have created or is a 
LogoWriter primitive may be 
included in an equation inside 
GRAPH'S list, as long as iX is 
used. 

6) If you wish to see what the 
equation ADDS DOUBLE :X 
might look like on the same 
graph, it is probably a good idea 
to change the turtle's color by 
typing, SETC (0-5) and then 

,USe GRAPH. 

There is a number which makes 
both equations equal if and only 
if the two lines intersect on the 
graph. The point at which they 
intersect is the number which 
makes both equations equal. 
This is a concept that always 
elluded me through numerous 
math courses and I suspect that 
others will experience similar 
mathematical revelations by 
using this microworld. 

7) You may change the graph's 
scale at any time by using 
WIDEANGLE or CLOSEUP. 
Sometimes you may need to put 
a scale factor in your equation so 
that the result is graphable. 

8) Your graph may be printed at 
any time by typing 
PRINTSCREEN. 

9) Clear the screen and repeat the 
procedure for different functions 
as often as you wish. 

ITT. Taftle Twits; 
The table tools afford the user 
the opportunity to create an XIY 
table of results from an inputted 
equation. The XIY table provides 
another medium for comparing 
the results of several functions. I 
will continue using the previous 



example in demonstrating how 
the table tools are used. 

TABLE requires 4 inputs; the 
equation, starting :X value, an 
ending :X value, and the 
increment by which you wish :X 
to change value. 

DType 
CG CT 
2)Type 
TABLE[DOUBLE ASD5 :X] 
-8 5 1 
This means: run the equation 
DOUBLE ADDS :X, the first 
number plugged in for -X will be 
-5, no dC value will be higher 
than 5, and plug in each integer 
between -5 and 5 if we increase 
the JC value by 1 each time. 

3) Observe the resuhs of the 
table. If there are a lot of results, 
hit APPLE • U and use the down 
arrows to scroll through the 
data. Then hit APPLE - D. 

4) Record the results with either 
pencil and paper, PRINTSCREEN, 
Or PRINTTEXT80. 
PRINTTEXTSO is recommended if 
there was a wide range of 
numbers used. 
TV. Function Chunks 

Another way of exploring the 
effect of functions on a number 
is to create a proportional 
graphic representation of the 
function using LogoWriter's 
turde graphics capabilities. 

The simple tool procedure, BAR, 
requires a numerical input and 
draws a rectangle the height of 
the input 

For Example: 
BAR SO 
draws a rectangle SO steps high 
MOVE.L 
BAR DOUBLE 50 
draws a rectangle 100 steps high 

MOVE.R M0VB.R 
BAR 3F0URTH3 DOUBLE 50 
draws a rectangle 75 steps high 

MOVE.L orMOVE.R moves the 
turtle to the left or the right so 
that the next bar can be drawn. 

Obviously, function chunks are 
an excellent medium for 
understanding fraction 
arithmetic, ratio, and proportion. 
As in the other four parts of the 
microworld, any one input 
mathematical operation may be 
used with the BAR, MOVE . R ., 
and MO VEJ. procedures. 

V. Function Machines: 

Probably the most exciting and 
educational aspect of the 
LogoWriterFunction Microworld 
is the ability to represent 
functions and equations in 
function machines. Function 
machines are a graphic way of 
solving a mathematical problem. 
In this microworld you actually 
see a numerical input go in the 
"hopper" (top) of a machine and 
come out the "spout" (bottom) 
so that the result of one function 
can be passed to the next 
function (machine). The last 
number displayed is the result of 
all of the function machines 
working together (the equation). 
This microworld has the ability 
to use up to 12 functions at 
once. Due to screen limitations, 
the functions can not be 
displayed in a vertical line, but 
rather 4 columns of 3 machines. 
At the end of a column the result 
(thus far) is passed to the top 
machine of the next column. The 
procedure for using the function 
machines is as follows: 

DType 
SETUP 
this clears the graphic screen and 
positions the turde in the proper 
place for drawing the function 
machines. 

2) Type 
DRAW [ADDS DOOBLB]* 
any.number or any other 
combination of functions (up to 
12) in the brackets and give a 
numerical input 
The function machines will then 
be drawn and a numerical 
answer will "drop out" the 
bottom. 

3) Type PRXHTSCRSBW if you 
wish a hard copy of your 
function machines. 

4) Repeat Steps 1-3 as many 
4imes as you wish to solve 
' function problems. 

What would happen if you 
doubled 1 twelve times??? Will 
the result be a small number or a 
large number??? 

Type 
SETUP 
DRAW [DOUBLE DOUBLE 
DOUBLE DOUBLE DOUBLE 
DOUBLE DOUBLE DOUBLE 
DOUBLE DOUBLE DOUBLE 
DOUBLE] 1 

Note for programmers: There are 
no global variables used in the 
LogoWriter code for the function 
machine part of the microworld. 
All values are passed from one 
procedure to another. 

Students may create any function 
they want For example: 

TO 2PLUS tNUMBER 
OUTPUT 2 + tNUMBER 
END 

TO ADDIS tNUMBER 
OUTPUT tNUMBER + IS 
END 

TO DOUBLE tNUMBER 
OUTPUT tNUMBER * 2 
END 



TO ADD5 :NUMBER 
OUTPUT tNUMBER + 5 
END 

TO TRIPLE :NUMBER 
OUTPUT :NUMBER * 3 
END 

TO SPLIT tNUMBER 
OUTPUT tNUMBER / 2 
END 

TO SQUARE tNUMBER 
OUTPUT tNUMBER * tNUMBER 
END 

TO CUBE tNUMBER 
OUTPUT tNUMBER * tNUMBER • 
tNUMBER 
END 

TO DIVTDEBY50 tNUMBER 
OUTPUT tNUMBER / 50 
END 

TO 2THIRDS tNUMBER 
OUTPUT tNUMBER • 2/3 
END 

TO 3FOURTHS tNUMBER 
OUTPUT tNUMBER * 3/4 
END 

TO BAR t HEIGHT 
REPEAT 2(FORWARD 
RT 90 FD 30] 
END 

TO MOVE.L 
PU 
LT 90 
FD 40 
RT 90 
PO 
END 

TO MOVE.R 
PU 
RT 90 
FD 40 
LT 90 
PO 
END 

TO STARTUP 
CLEAREVENTS 
CLEARTOOLS 

tHEIGHT 

CLBARNAMES 
GETTOOLS "FUNCT.TOOLS 
NORMAL. SCALEf.' 
RECYCLE 
END 

FTINCTTON TOOLS 

THE PAGE NAME MUST BE 
CALLED "FUNCT.TOOLS 

FUNCTION GRAPH AND X/Y 
TABLE TOOLS 
(C) GARY 3. STAGER 1987 

TO GRID 
PU HOME 
PD 
REPEAT 30(X.AXIS] 
PU HOME 
PD 
REPEAT 20[Y.AXIS] 
PU HOME 
END 

TO X.AXIS 
SETH 90 
NOTCH 
FORWARD 10 
END 

TO Y.AXIS % 
PD 
SETH 0 . 
NOTCH 
FORWARD 10 
END 

TO STARTUP 
MAKE "SCALE 10 
END 

TO NOTCH 
RT 90 
FORWARD 3 
BACK 6 
FORWARD 3 
LT 90 
END 

TO GRAPH tFUNCTION 
CT 
IF NOT NAME? "SCALE 
[NORMAL.SCALE] 
MAKE "X -80 / tSCALE 
PU 
SETP tX 
RUN tFUNCTION 

PRINT (SENTENCE tFUNCTION 
[FROM] tX CHAR 32 [TO] (0 
- tX>) 
PD 
GRAPH1 tFUNCTION tX (0 -
tX) 1 
END 

TO GRAPH1 tFUNCTION tX 
tXMAX tINC 
IF tX > tXMAX [STOP] 
SETP tX 
RUN tFUNCTION 
GRAPH1 tFUNCTION tX + 
tXMAX tINC 
END 

TO SETP tX tY 
IF OR (tSCALE * tY) > 
'(tSCALE * tY) < -80 
[STOP] 
IF OR (tSCALE * tX) > 
(tSCALE * tX) < -140 
[STOP] 
PU 
SETPOS LIST (tSCALE * 
(tSCALE * tY) 
PD 
SETPOS LIST (tSCALE * 
(tSCALE • tY) 
END 

TO ZOOM 
MAKE "SCALE 10 
GRID 
END 

TO NORMAL.SCALE 
MAKE "SCALE 1 
GRID 
END 

tINC 

80 

140, 

:X) 

tX) 

TABLE TOOLS 

TO TABLE tFUNCTION tSTART 
tSTOP tINC 
CT CG HT 
CHART 
IF NOT NAME? "SCALE 
[NORMAL.SCALE] 
MAKE "X -.START 
PRINT (SENTENCE tFUNCTION 
[FROM] tX [TO] tSTOP) 
REPEAT 4[PRINT [1] 
TABLE1 tFUNCTION tX tSTOP 
:INC 
END 



TO TABLE1 tFUNCTION tX 
tXMAX tINC 
IF tX > tXMAX [STOP] 
PRINTPOINT tX RUN 
tFUNCTION 
TABLE1 tFUNCTION tX + tINC 
tXMAX tINC 
END 

TO PRINTPOINT tX tY 
INSERT tX 
TAB TAB 
CB 
PR tY 
END 

TO CHART 
PU 
SETPOS [-140 45] 
PD 
SETH 90 
FORWARD 85 
BACK 40 
LT 90 
FORWARD S 
BACK 135 
PU 
SETPOS [-115 55] 
LABEL "tX 
PU 
SETPOS [-90 55] 
LABEL "tY 
END 

FUNCTION MACHINE 
TOOLS 

TO SETUP 
CG PU 
SETPOS [-135 SO] 
END 

TO MACHINE tNUM 
IF MEMBER? tNUM (4 7 10] 

[PU SETPOS LIST (XCOOR 
POS) + 70 501 
PD 
FORWARD 25 
RT 90 
FORWARD 22 
LT 135 
FORWARD 15 
BACK 15 
RT 135 
PU 
FORWARD 20 
LT 45 

PD 
FORWARD 15 
BACK 15 
RT 4S 
FORWARD 22 
RT 90 
FORWARD 25 
RT 90 
FORWARD 22 
LT 135 
PD 
FORWARD 15 
BACK 15 
RT 135 
PU 
FORWARD 20 
LT 45 
PO 
FORWARD 15 
BACK IS 
RT 45 
FORWARD 22 
RT 90 
END 

TO NAME .MACHINE tNAME 
tFUNCTION tINPUT 
MAKE "OLD.POS POS 
PU 
SETPOS LIST ((XCOOR 
tOLD.POS) + 10) ((YCOOR 
•.OLD.POS) + 15) •, 
LABEL tNAME 
INPUT LIST ((XCOOR 
tOLD.POS) + 15) {(YCOOR 
tOLD.POS) + 25) tINPUT 
RESULT LIST (XCOOR 
tOLD.POS) ((YCOOR 
tOLD.POS) - 50) (RUN 
SENTENCE tFUNCTION 
:INPUT) 
SETPOS tOLD.POS 
PU 
BACK 60 
PD 
OUTPUT (RUN SENTENCE 
tFUNCTION tINPUT) 
END 

TO XCOOR tPOS 
OUTPUT FIRST POS 
END 

TO YCOOR :POS 
OUTPUT LAST POS 
END 

TO INPUT tPOS tNUMBER 
PU SETPOS tPOS 
LABEL tNUMBER 

TO RESULT tPOS tNUMBER 
PU SETPOS tPOS 
LABEL tNUMBER 
END 

TO DRAW tLIST tINPUT 
IGNORE DOIT tLIST tINPUT 
1 
END 

TO DOIT tLIST tINPUT :NUM 
IF EMPTY? tLIST [IGNORE 
tINPUT OUTPUT (]] 
.MACHINE tNUM 
• OUTPUT DOIT BUTLAST tLIST 
(NAME.MACHINE (LAST tLIST) 
(LAST tLIST) tINPUT) tNUM 
+ 1 ' 
END 

TO IGNORE tTHING 



Logo Modulo Designs - @ 1986 Gary S. Stager 

Recendy, I was sitting in a rather mundane college 
math course and we were studying the topic of mathematical 
systems and modulo arithmetic, while thumbing through 
the math text,,! came across one of those familiar "challenge 
problems" found in the bottom comer of a page. The 
challenge suggested drawing a modulo design for a 
particular mod. Being a former mathphobic and bom-again 
mam student I became intrigued by the idea of teaching 
Logo to draw a modulo design based on any mod that is 
inputted. 

Below are the procedures I created for drawing 
modulo designs. The first set of procedures draws a. design 
based on the products of every pair of numbers in the mod. 
The second set of procedures draws a design based on the 
product of one factor and the other numbers in the mod. 

Modular Arithmetic. an arithmetic constructed to use a 
finite rather than infinite set of numbers. Modular arithmetic 
is also sometimes called clock arithmetic^ because the clock 
face provides a perfect model. For example: in MOO 12, 
(7 •¥ 8) a (Remainder of 15 and 12) a 3 

The Program 

TO START :CIRC :MOO 
CIRCLE CIRC :MOO 
DO 0 :MOD 
END 

TO CIRCLE :CIRC :MOO 
PO 
C1RCLER :CIRC MOD MOD -1 
END 

TO C1RCLER :CIRC :MOD :COUNT 
IF COUNT <0 [STOP] 
REPEAT 360 / :MOD [FO CIRC / 360 RT 1 ] 
MAKE '.COUNT POS 
NOTCH 
CIRCLER CIRC :MOO COUNT • 1 » 
END 

TO NOTCH 
RT90FD3BK6FD3LT90 
END 

TO DO :NUMBER1 :MOD 
IF :NUMBER1 > MOD -1 [STOP] 
INC :NUMBER1 6 MOD 
DO :NUMBER1 +1 :MOO 
END 

TO INC :NUMBER1 :NUMBER2 :MOD 
IF :NUMBER2 > MOD -1 [PU STOP] 
PLOT :NUMBER1 :NUMBER2'MOD 
INC :NUMBER1 :NUMBER2 + 1 MOD 
END 

TO PLOT :NUMBER1 :NUM8ER2 :MOD 
PU 
SETPOS THING MOD :NUMBER1 MOD . 
SETH TOWARDS THING ( MOD :NUMBER1 ' 
:NUMBER2 MOO) PO 
FD DISTANCE THING ( MOD :NUMBER1 ' 
:NUMBER2 MOO) 
END 

TO MOO :NUMBER :MOD 
OP REMAINOER :NUMBER MOD 
END 

For Mac Liwn (LCSD Use this procedure in place 
of the other PLOT procedure. 
TO PLOT tNUMBERl :NUMBER2 :MOO 
PD 
UNE THING MOD :NUMBER1 MOD THING ( 
MOD :NUMBER1 * :NUMBER2 MOD) 
END 
This procedure uses the Mac's QuickDraw Graphic 
routines and speeds up the drawing of the design. 
[For versions of Logo other than Mac Logo 
(LCSI) , replace CG with CS] 



How the Program Works 
.i. START is the toplevel procedure for this program and 

takes two inputs; the circumference of the circle and the mod 
you wish to draw. 

A circle is then drawn and divided by the mod specified 
in the START procedure. As each segment of the circle is 
drawn, the position of the NOTCH is made into a global 
variable. 

DO and INC are recursive procedures that determine the 
product of all the possible factors in a particular MOD. The 
first factor and the product of the first factor and every other 
factor in the mod is then passed to the PLOT procedure. 

The PLOT procedure is the heart and soul of the 
modulo design program. PLOT sets the turtle's position to 
the thing of the first factor (the position is stored under the 
name of each number in the rood). The turtle's beading is 
then set TOWARDS the product of the first factor and 
another number in the mod. The turtle then goes forward the 
distance between the position on the circle of the factor and 
the position on the circle of the product of the two factors. 
[Note: You may need to write TOWARDS and DISTANCE 
if your version of Logo doesn't contain these primitives] 

Modulo Designs with Only One Fnctor 

TO START :CIRC :MOD :FACTOR 
CIRCLE CIRC MOD 
DO FACTOR MOD MOD 
END 

TO CIRCLE :CIRC :MOD 
PD 
GRCLER CIRCUMFERENCE MOD MOD • 1 
END 

TO CIRCLER tCIRC :MOD COUNT 
IP COUNT <0[STOP1 
REPEAT 360 / MOD [ FD -.CIRCUMFERENCE/ 360 
RTl] 
MAKE COUNT POS 
NOTCH 
CIRCLER CIRCUMFERENCE MOD COUNT -1 
END 
TO DO -.FACTOR tMOD tBASE 
DP MOD <1 (STOP] 
PLOT MOD FACTOR .BASE 
DO FACTOR MOD - 1 £ASE 
END 

TO.MOD tNUMBER tMOD 
OP REMAINDER -.NUMBER MOD 
END 

TO NOTCH 
RT9QFD3BK6FD3LT9Q 
END 

TO PLOT tNUMBERl :NUMBER2 tMOD 
PD 
LINE THING MOD -.NUMBERl MOD THING (MOD 
•JWMBER1 • .NUMBER2 MOD) 
END 

How It Works 
This program differs from the fust modulo design 

program by drawing only the product of one particular 
factor and each number in the specified mod. The first set 
of modulo design procedures draws the products of every 
possible pair of factors in a particular mod. 

The modulo design pictured above is in MOD 20 with 
a factor (or multiplier) of S. This means (hat the turtle 
connects each number in mod 20 {1...20} with the product 
of that number and 5. This mod would be notuted (20 5). 
To recreate this design type: 

S T A R T 7 0 0 (Of any circumference) 20 5 

Gary S. Stager 
Director of Training 
Network for Action in Microcomputer Education 
12 Locust Place 
Wayne, NJ 07470 
(201)831-0133 



A HISTOGRAM OF A ROI.l.INO DTK miCWi 

IDie 
TO SETUP 
PU SETPOS [-130 -75] 
SETHO 
END 

TO ROLL.fi tNUMBER. 
SETUP 
IF I > tNUMBER [STOP] 
RT90 ~ 
PU 
FD30*(l + RANDOM6) 
LT90 
BAR 
ROLL.6 tNUMBER - 1 .' 
END t 

TO BAR 
IF COLORUNDER - 0 [PD FD 0 STOP] 
PUFD2 
BAR 
END 
To graph the rolling of a die, type: ROLL.6 number of rolls 
The result for each number should be about even in height. • 
To Graph 1 Dice 

Use the following procedure with the other procedures listed above: 

TO ROLL.12 tNUMBER 
SETUP 
IF I > :NUMBER [STOP1 
RT90 
PU 
FD 15 • (1 + RANDOM 6) + (I + RANDOM 6) 
LT90 
BAR 
ROLL.12 tNUMBER - 1 
END 
Type ROLL.12 number of rolls to roll 2 dice. This should result in a bell-shaped curve. 

GARY S. STAGE I 
President ot iSTE's SlGLoi 

U15RATZEfifi 
IrfueaciwMl Catnp«cing Cansulunt WAYNE. N J 074 

l20l)942-3S 

http://ROLL.fi


Sites	to	Explore	
Dr.	Constance	Kamii’s	Web	Site	
https://sites.google.com/site/constancekamii/	

Conrad	Wolfram’s	TED	Talk	
https://www.youtube.com/watch?v=60OVlfAUPJg 

Stephen	Wolfram’s	Intro	to	
Wolfram	Language		
https://www.youtube.com/watch?v=_P9HqHVPeik 

Making	Programming	Accessible	to	
Everyone	with	Wolfram	Language	
https://www.youtube.com/watch?v=ALuQzgDvr2g 

Creating	a	Video	Game	in	Lynx	

http://stager.tv/blog/?p=2436 for video tutorials 

Note: The following project starters are written for Lynx and its predecessor 
LogoWriter. It should be possible to translate them into Scratch (scratch.mit.edu) or 
SNAP! (snap.berkeley.edu) 



Recognize the Superiority of Games Over Worksheets  
Kamii, C. (2000). Young Children Invent Arithmetic (2nd ed.): New York: Teachers College 
Press. 
 
It is necessary for children to repeat adding the same numbers if they are to remember sums and 
build a network of numerical relationships (refer to Figure 5.2), Repetition in games is much 
better than with worksheets for many reasons. The fact that children are intrinsically motivated 
in games was discussed earlier in this chapter. Seven other reasons are given below. 
 
First, feedback is immediate in games because children supervise each ' other. By contrast, 
worksheets are usually returned the next day, and children cannot remember and do not care 
about what they did yesterday. 
 
Second, when worksheets are used; truth is decided by the teacher, and children get the message 
that truth can come only from the teacher. In a game, by contrast, the players decide whether an 
answer is correct. If one child says that 2 + 2 is more than 2 + 3, for example, children try to 
convince each other and arrive at truth by themselves. In logico-mathematical knowledge, 
children are bound to arrive at truth if they argue long enough because there is absolutely nothing 
arbitrary in logico-mathematical knowledge. 
 
Third, games can be played at many levels in a variety of ways, but worksheets encourage 
children to crank answers out mechanically. In playing Put and Take (see Chapter 11), for 
example, some children can make 6 only with 6 chips that are each worth one point. Others say 
that they can make 6 either with 3 2-point chips or with 1 5-point chip and a 1-point chip. 
 
Fourth, having to write answers interferes with the possibility of remembering sums. Children 
are much more likely to remember sums when they are free to think "2, 3, and 5," for example, 
without stopping to write "5." Some first graders have to think to make a "5" look different from 
an "S."' 
 
Fifth, children are more likely in a game to construct a network of numerical relationships (refer 
to Figure 5.2). If a player rolls a 3 and a 3, and the next roll is a 3 and a 4, for example, there is a 
high probability that the answer will be deduced from 3 + 3 = 6. When children fill out 
worksheets, by contrast, they approach each problem mechanically as a separate and independent 
problem. 
 
Sixth, children choose the specific games they want to play, but they can seldom choose the 
worksheets they get. If children can choose an activity that appeals to them, they are likely to 
work harder. In life outside school, adults constantly make choices, and children need to learn to 
make wise choices within limits. 
 
Our seventh and last point is that children do not develop sociomorally by sitting alone filling out 
worksheets. They are well behaved when they are filling out worksheets, but working alone 
precludes the possibility of sociomoral development. In games, by contrast, children have to 
interact with others, make decisions together, and learn to resolve conflicts. As stated in Chapter 
4, sociomoral education takes place every minute of the school, whether or educators are aware 
of it. By giving countless worksheets, we unwittingly reinforce children's heteronomy. Thereby, 
preventing the development of their autonomy.  
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Teachers introduce multiplication in kinder-
garten and the first two grades in the form of
word problems such as the following: “I

want to give 2 pieces of chocolate to each person
in my family. There are 5 people in my family.
How many pieces of chocolate do I need?” Chil-
dren usually use repeated addition to solve such
problems, as Carpenter et al. (1993) and Kamii
(2000) describe. By third grade, however, many
children begin to use multiplication as they
become capable of multiplicative thinking (Clark
and Kamii 1996). 

Some educators think that teachers should teach
for understanding of multiplication rather than for
speed. This probably is a reaction to teachers’ com-
mon practice of making systematic use of timed
tests without any reflection, for example, about the
relationship between the table of 2s and the table of
4s. In our opinion, children should have an under-
standing of multiplication and should develop
speed. With our advanced third graders in a Title I
school, therefore, we have been using games
instead of worksheets or timed tests after the chil-
dren have developed the logic of multiplication.
The results have been encouraging. Toward the end
of the school year, when the children had played
multiplication games for several months, we gave a
summative-evaluation test consisting of one hun-
dred multiplication problems to finish in ten min-
utes. Every child in the class except one (who made
two errors) wrote one hundred correct answers
within the time limit. This article describes some of
the games we used, how we modified commer-

cially made games, and what we learned by using
them.

Seven games are described under three head-
ings: a game involving one multiplication table at a
time, games involving many multiplication tables
and small but increasing factors, and games requir-
ing speed.

A Game Involving 
One Table at a Time
Rio is a game that is best played by three children.
If there are four players, turns come less frequently,
and children will be less active mentally. Rio uses
ten tiles or squares made with cardboard, fifteen
transparent chips (five each of three different col-
ors), and a ten-sided number cube showing the
numbers 1–10. For the table of 4s, for example, we
wrote the ten products (4, 8, 12, 16, 20, 24, 28, 32,
36, and 40) on the tiles. These tiles are scattered in
the middle of the table, and each player takes five
chips of the same color.

The first player rolls the number cube, and if a

Constance Kamii teaches at the University of Alabama at Birm-
ingham. Her interest is in figuring out how to improve mathe-
matics education for young children by using Piaget’s theory.
Catherine Anderson holds a master’s degree in education and
has taught for more than fifteen years. Twelve of those years
have been at Rio Vista Elementary School, a Title I, NCLB,

under-performing school. Her focus areas are the development of subtraction and multiplica-
tive thinking.

By Constance Kamii and Catherine Anderson

Multiplication
Games: 

How We Made and
Used Them
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5 comes up, for example, he or she puts a chip on
the tile marked “20” for 5 × 4. The second player
then rolls the number cube, and if an 8 comes up,
he or she puts a chip on 32 for 8 × 4. If the third
player rolls a 5, the tile marked “20” already has a
chip on it, so the player must take it. The third
player now has six chips and the first player has
four. Play continues in this way, and the person
who plays all his or her chips first is the winner.

This is a good introductory game, and most
third graders begin by using repeated addition
rather than multiplication. As they continue to play
Rio, finding products when multiplying by 2 and
10 becomes easy. The next products that they mas-
ter are multiples of 5 and 3. Multiplying by 6, 7, 8,
and 9 is much more difficult. The next category of
games is more appropriate after this introduction to
all the tables.

Games Involving Many
Tables and Small but
Increasing Factors
Figure 1 shows easy products of factors up to 5.
When children know these products very well,
teachers can introduce factors up to 6, 7, and so on.

Figure 1
Easy products and increasingly greater factors

1 2 3 4 5 6 7 8 9

1 1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20
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Children practice a multiplication game.



Examples of games in this category are Salute,
Four-in-a-Row, and Winning Touch.

Salute
In Salute, three players use part of a deck of play-
ing cards. At first, we use the twenty cards A–5 and
remove all the others (6–K). Ace counts as one.
Later, we use the twenty-four cards A–6, then A–7
(twenty-eight cards), and so on. 

The dealer holds the twenty cards A–5—or forty
cards if two decks are used—and hands a card to
each of the two players without letting anyone see
the numbers on them. The two players then simul-
taneously say “Salute!” as they each hold a card to
their foreheads in such a way that they can see the
opponent’s card but not their own. The dealer, who
can see both cards, announces the product of the
two numbers, and each player tries to figure out the
factor on his or her card. The player who
announces the correct factor first wins both cards.
The winner of the game is the player who has more
cards at the end. (We decided that the dealer should
hold the deck because when the cards were dealt,
the players confused their “winnings” with the
cards they had yet to use.)

When this game becomes too easy, children can
use cards up to 6, 7, and so on, as stated earlier.

Four-in-a-Row
This is a two-player game that uses a board such as
the one in figure 2a, eighteen transparent chips of
one color, eighteen transparent chips of another
color, and two paper clips. Each player takes eigh-
teen chips of the same color to begin the game. The
first player puts the two paper clips on any two
numbers at the bottom outside the square, such as
the 4 and the 5. The same player then multiplies
these numbers and puts one of his or her eighteen
chips on any 20 because 4 × 5 = 20. 

The second player moves one of the two paper
clips that are now on the 4 and the 5. If the second
player moves one of them from 4 to 3, this person
can place one of his or her eighteen chips on any 15
because 3 × 5 = 15. On every subsequent turn, a
player must move one of the two paper clips to a
different number. Two paper clips can be placed on
the same number, to make 5 × 5, for example. The
person who is first to make a line of four chips of
the same color, vertically, horizontally, or diago-
nally, is the winner.

The reader may have seen a Four-in-a-Row
board such as the one in figure 2b. This board is
not ideal because some children use only the fac-

tors up to 4 or 5. The board in figure 2a is better
because it does not involve easy factors such as 1
and 2 and more difficult factors such as 7, 8, and 9.
The range of factors from 3 to 6 is more appropri-
ate at the beginning because it focuses children’s
efforts on a few combinations at the correct level of
difficulty. When the board in figure 2a becomes
too easy, teachers can introduce factors 3–7 and a
new board made with appropriate products.

We randomly scattered the numbers on the
board in figure 2a and chose them in the following
way. The board includes ten combinations of fac-
tors 3–6 because there are four combinations with
3 (3 × 3, 3 × 4, 3 × 5, and 3 × 6), three combina-
tions with 4 (4 × 4, 4 × 5, and 4 × 6), two combi-
nations with 5 (5 × 5 and 5 × 6), and one combina-
tion with 6 (6 × 6). Because the board has thirty-six
(6 × 6) cells, each product can appear three times
and six products can appear more than three times.
We usually use the more difficult products for the
remaining cells, such as 36, 36, 30, 30, 25, and 24.
(We omitted the combinations 4 × 3, 5 × 3, 5 × 4,
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Figure 2
Four-in-a-Row boards

3     4     5     6
(a) A Four-in-a-Row board with factors 3–6

1     2     3     4     5     6     7     8     9
(b) A common Four-in-a-Row board

24 9 20 15 30 18

12 30 25 36 24 16

36 15 9 18 20 36

16 36 30 25 12 30

12 20 25 15 24 36

24 16 30 9 25 18

1 2 3 4 5 6

7 8 9 10 12 14

15 16 18 20 21 24

25 27 28 30 32 35

36 40 42 45 48 49

54 56 63 64 72 81
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6 × 3, 6 × 4, and 6 × 5 from this consideration
because 4 × 3, for example, was the same problem
as 3 × 4 to our students.)

Winning Touch 
Figure 3a shows the board for Winning Touch to 6
and figure 3b shows the board for Winning Touch
to 7. These boards are modifications of a commer-
cially made game called The Winning Touch (Edu-
cational Fun Games 1962). This ready-made game
involves all the factors from 1 to 12 and uses a
much larger (12 × 12) board than the boards in
figure 3. A chart on the inside of the cover shows
all one hundred forty-four products, and the
instructions in the box advise the players to consult
this chart when they are unsure of a product. 

We took the chart out of the game because it
motivates children not to learn products. When
children can look up a product quickly, they are
deprived of an opportunity to learn it through the
exchange of viewpoints among the players. The
second modification we made was to eliminate fac-
tors less than 3 and reduce the range of factors. For
example, when we made the board for factors from
3 to 6, we called it Winning Touch to 6 (see
fig. 3a). As the class became ready to move on to

Figure 3
Two boards for Winning Touch

(a) Winning Touch to 6

(b) Winning Touch to 7
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Children run through a practice game before entering into competition.



more difficult factors, we made new boards and
called them Winning Touch to 7 (see fig. 3b), and
so on. We eliminated factors greater than 10, as
well as 10, from the game.

Two or three people can play this game. Win-
ning Touch to 6 uses sixteen tiles, on which are
written the sixteen products (9, 12, 15, and so on)
corresponding to the columns and rows. All the
tiles are turned facedown and mixed well, and each
player takes two tiles to begin the game. The play-
ers look at their two tiles without letting anyone
else see them.

The first player chooses one of his or her tiles
and places it in the square corresponding to the two
factors. For example, 25 must be placed in the col-
umn labeled “5” that intersects the row labeled “5.”
The first player then takes one tile from the face-
down pile to have two tiles again. The players take
turns placing one tile at a time on the board. To be
played, a tile must share a complete side with a tile
that is already on the board. Touching a corner is
not enough. For example, if the first player has
played the tile marked 25, the only products that
the second player can use are 20 and 30.

If a player does not have a tile that can be
played, he or she must miss a turn, take a tile from
the facedown pile, and keep it in his or her collec-
tion. In other words, the player cannot play this tile
during this turn. The person who plays all his or
her tiles first is the winner. If a player puts a tile on
an inappropriate square, the person who catches
the error can take that turn, and the person who
made the error must take the tile back.

When the students are fairly certain about most
of the products, it is time to work for mastery and
speed. The next section discusses Around the
World, Multiplication War, and Arithmetiles.

Games Requiring Speed

Around the World 
In this whole-class activity, the teacher shows a
flash card and two children at a time compete to
see who can give the product of two numbers
faster. To begin, the whole class is seated except for
the first child, who stands behind the second child
to compete. The winner stands behind the third
child, and these two wait for the teacher to show
the next flash card. The child who wins stands
behind the fourth child, and so on, until everyone
has had a chance to compete. If the seated child
beats the standing child, the two exchange places,

and the winner moves to the next person. A child
who defeats many others and makes it to the end by
moving from classmate to classmate is the cham-
pion who has gone “around the world.”

Some teachers feel that Around the World bene-
fits only students who already know most of the
multiplication facts. When used skillfully, how-
ever, this game can motivate students to learn more
combinations at home.

Multiplication War 
War is a simple game that uses regular playing
cards. In the traditional game, the cards are first
dealt to two players, who keep them in a stack,
facedown, without looking at them. The two play-
ers simultaneously turn over the top cards of their
respective stacks, and the player who has the
greater number takes both cards. The winner of the
game is the person who wins the most cards.

Multiplication War is a modification of War. We
begin by using cards up to 5 and later add the 6s,
7s, 8s, and 9s gradually. After dealing the cards, the
two players simultaneously turn over the top cards
of their respective stacks, and the person who
announces the correct product first wins both
cards. The winner of the game is the player who
collects the most cards. It is up to the two players
to decide, before beginning the game, what hap-
pens in case of a tie.

Arithmetiles
This is a modified version of a commercially made
game called Arithmechips (Lang 1990). Arith-
mechips uses a board that has a grid of eighty-one
(9 × 9) squares and one hundred fifty-six chips.
Most of the chips have a multiplication problem on
one side and the corresponding product on the
other side. To begin the game, eighty chips are ran-
domly placed in every square of the board except
the one in the middle marked “X,” with the prob-
lem side up. The players win chips by jumping
over one chip at a time, as in Checkers, reading
aloud the problem on the chip they just jumped,
stating the answer, and turning the chip over to ver-
ify the answer. If the answer is correct, the player
can keep that chip. 

We modified this game and called it “Arith-
metiles.” We made the following modifications:

• Eliminating factors of 0, 1, 11, and 12
• Introducing the requirement of speed
• Eliminating the possibility of “self-correction”

by not writing a product on each chip
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• Eliminating the requirement of having to read
the problem aloud before stating a product 

• Introducing levels of difficulty

Arithmetiles is a three-player game played with
a 9 × 9 grid that has an “X” in the middle. The
game requires eighty problems because players
must fill all the squares in the grid except one with
tiles that have multiplication problems such as
6 × 7 on them. But because there are only sixty-

four combinations of the factors 2–9, sixteen prob-
lems must appear on more than one tile. We use the
following more difficult combinations on the six-
teen tiles: 6 × 6, 6 × 7, 6 × 8, 6 × 9, 7 × 6, 7 × 7,
7 × 8, 7 × 9, 8 × 6, 8 × 7, 8 × 8, 8 × 9, 9 × 6, 9 × 7,
9 × 8, and 9 × 9.

The eighty tiles are placed, facedown, on all the
squares except the one marked “X.” The first
player may play any one of the tiles marked in
black in figure 4a and jump over a tile into the
empty cell marked “X,” vertically, horizontally, or
diagonally. He or she quickly turns over the
jumped tile and announces the product. If the other
two players agree with the product and the speed
with which the player announced it, the first player
can keep the jumped tile. If the product is incorrect,
the person who was first to correct it can keep the
tile in question. If the other two players agree that
the first player gave the answer too slowly, the
jumped tile is returned to the grid and the turn
passes to the next player. 

The X cell is filled after the first play. The sec-
ond player can choose any tile that he or she wishes
to jump vertically, horizontally, or diagonally into
the vacated cell. Play continues in this manner, as
in Checkers. The person who collects the most tiles
is the winner.

As figure 4b shows, making two or more jumps
is possible. To make multiple jumps, a player must
keep his or her hand on the tile while stating the
first product and every subsequent product.

Teachers can make Arithmetiles more difficult
by eliminating the sixteen easy products of 2–5
that appear in figure 1. In this version, we are left
with only 64 – 16 = 48 combinations of factors. To
have eighty problems, players must use most com-
binations twice and some combinations only once.

How We Used the Games
Motivation to learn the multiplication tables must
come from within the child. The teacher has much
to do with the development of this motivation,
however. Toward the end of the year, our students’
desire to beat the teacher in Multiplication War and
Arithmetiles inspired them to learn the tables. A
similar motivation was to beat the “stars” in the
class. When many students knew the tables rather
well, the teacher began to challenge as many
groups as possible every day. She briefly played
with one group, left the students to continue play-
ing by themselves, and went on to the next group,
asking, “Who’s going to beat me today?” Some
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Figure 4
Possible jumps in Arithmetiles

(b) Possible moves involving one 
or more jumps

(a) The eight possible jumps at the 
beginning of the game



students made flash cards to practice at home, and
a few were observed quizzing each other with flash
cards on the bus during a field trip.

The children were motivated to learn the multi-
plication combinations because the games were
fun and had a lot of variety. There was no coercion,
timed tests, or the threat of a bad grade. Of course,
the teacher explained how this knowledge would
help in fourth grade, but students largely ignored
such talk about next year. When the teacher played
every day with small groups of children, they
received a stronger message: that games are impor-
tant enough for the teacher to play. 

What about the games was fun to a third grader?
Students made decisions every day about which
game to play and with whom. Deciding whom to
play with was especially a “big deal.” Students
who had mastered many of the combinations
wanted to play against someone at the same level.
Those who were not fluent wanted to play against
someone at their level so that they still had a
chance of winning. A difficult game such as Arith-
metiles was not popular with the slower students.
They tended to choose games such as Winning
Touch, which did not penalize them for lack of
speed.

The teacher’s role was considerable in giving
choices and maximizing learning. We deliberately
introduced the more difficult factors one at a time.
For example, when we introduced 6 as a multiplier,
we played Winning Touch to 6, Four-in-a-Row to
6, Multiplication War with cards only to 6, and
Salute, also with cards to 6. We played these games
over a two-week period using factors up to 6. After
that, we focused on factors up to 7 for about a
week, then factors up to 8 and 9.

After a month, when the students had played all
these games at four different levels of difficulty, the
teacher began to announce on some days that
everyone had to play a game with sevens or that
everyone had to play Winning Touch at their “just
right” level. She also introduced other games such
as PrimePak (Conceptual Math Media 2000) and
Tribulations (Kamii 1994). The children also bene-
fited from whole-class discussions of strategies. In
one of the discussions, for example, one child said
that multiplying any number by 8 is easy if “you
double it and double it and double it,” meaning that
8 × 6 can be done easily by doing 2 × 6 = 12,
2 × 12 = 24, and 2 × 24 = 48.

As the year progressed, the students selected
appropriate partners and games. Some stuck with
the same game for a long time; they needed time to

develop comfort with certain combinations. Every-
one learned the multiplication combinations and
enjoyed doing so.
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1 1 
PLAYING WITH NUMBERS 
Constance Kamii and Reinventing Arithmetic in 
Early Childhood Education 

Barbara Beatty 

Convinced that famed S,viss psychologist Jean Piaget, with whom she studied in 
Geneva, was right about children's cognitive development, Constance Kamii took 
on the task of reinventing how young children are taught arithmetic. In this 
chapter I examine how lfamii came to think that almost everything about tradi-
tional arithmetic teaching for preschool through Grade Three was wrong, and 
how she went on to co-author and write the books Piaget, Children, and Nmnber 
(1976), Physical Knowledge in Prescliool Education (1978), Group Games in Early 
Education (1980), Number in Preschool and Kindergarten (1982), Young Children 
Reinvent Arithmetic (1985), Young C/ii/dren Continue to Reinvent Arithmetic, 2nd 
Grade (1989), and Young Children Continue lo Reinvent Arithmetic 3rd Grade (1994), 
which continue to influence early childhood education today. 

One of the leading figures in the movement for constructivist preschool 
education (the notion that young children construct concepts on their own, 
through play with materials and games, in carefully planned classroom settings 
with supportive, interactive teachers), Kamii has tirelessly promoted her beliefs 
nationally and internationally. Her ideas were perceived as so radical, especially 
that of the harmfulness of directly teaching young children algorithms, that she 
eventually had to move from Chicago to Alabama, where she could find a few 
principals who would allow her to experiment in their schools. 

In the tradition of preschool educators such as Friedrich Froebe!, Patty Smith 
Hill, and Harriet Johnson, Karnii believed that children learned basic concepts as 
well as sophisticated knowledge through manipulation of physical materials. 
Throughout her long career, Kamii argned that playing with blocks and other 
preschool materials and games was how children learned arithmetic in a deep and 
lasting way. Ahead of the times, Karnii's worries about the effectiveness of arith-
metic teaching and learning are the subject of great concern currently, when 
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mathematical knowledge and weaknesses in math teaching have been identified 
as one of the greatest problems in American education. 

An International Childhood and Education 

Constance Karnii's radical ideas about how young children learn and should be 
taught were influenced by her international background and education. Initially a 
Japanese citizen, she was born in Geneva in 1931, where her father was working for 
the International Labor Organization. Her parents, Kanui says, had "very 
democratic ideas." She grew up speaking French as her first language, despite her 
parents' eflorts to teach her Japanese (Kanui, 2008). In 1939, when she was eight, her 
father took the fanuly back to Japan, where Karnii lived during World War II. She 
remembers the bombings every night. She remembers the "at-ta-ta-ta-ta-ta" sound 
of machine guns during the day and wondering "am I still alive?" after each attack. 
Educated in Japanese schools, which during this period were quite regimented 
(a pedagogical formality she later rejected), Kamii looked back on her early 
education in Geneva as a time when she was free to explore and learn on her own. 

Kanui's life was affected by American prejudice against the Japanese. Her 
mother, who was Japanese-American, lost her citizenship after World War II, but 
then regained it, as other Japanese-Americans did. Not naturalized until later in 
her life, Kamii's legal status as a Japanese ritizen had an impact on her career path. 
Kanui became interested in psychology and education when she came to the 
United States in the 1950s, where her mother and brother had moved. Kamii 
attended Pomona College in California, and after graduating in 1955 with a 
major in sociology, went on to the University of Michigan, which gave her a 
scholarship, to get a Master's degree in the School of Education. With a student 
visa that required her to continue studying, she stayed on at Michigan to get her 
doctorate in psychology and education. 

At Michigan, Karnii met fellow student David Weikart who in 1961 helped her 
get a job as a half-time counselor in a junior high school in the nearby Ypsilanti 
Public Schools while she was still a graduate student. Weikart, who would go on 
to become a world-famous preschool researcher, had begun working in Ypsilanti 
in 1957 as a psychological tester for developmentally delayed children and a year 
later became the director of special education.With Weikart, Karnii began focusing 
on the antecedents oflearning problems (Karnii &Weikart, 1963;Weikart, 2004). 

Piagetian Preschools 

Karnii's ideas about arithmetic teaching and learning were grounded in research 
she did with Weikart at the now iconic Perry Preschool Project in Ypsilanti, 
Michigan. Karnii then broke with Weikart over how Piaget's concepts should be 
implemented, and went on to develop her own ideas about young children's 
learning. 
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Based on their experiences working with children with special needs, Kam.ii 
and Weikart wondered whether something might be done before children entered 
school that would help prevent later problems.As a counselor, Kam.ii noticed that 
the children getting kicked out of class were from low-income backgrounds, 
"troublemakers," and that the trouble started right away, in kindergarten. Kam.ii 
began doing research for her dissertation that gave her more evidence that 
reaching what today would be called "at-risk children" early was very important. 
With a list from the welfare department, she studied the child-rearing practices of 
African-American mothers living in deep poverty and saw how difficult it was for 
many of them to provide their four-year-olds with the kind of enriched educa-
tional environment that young children from middle-class backgrounds received. 

With "compensatory education," the idea that schools could make up for the 
"cultural deprivation" of children from low-income backgrounds, in full sway and 
growing concerns about the effects of poverty and social inequality, Weikart and 
Kamii were part of a new wave of researchers looking to preschool education to 
help the children of the poor (Beatty, 2009, 2012; Bereiter & Engelmann, 1966; 
Deutsch, 1967; Gray & Klaus, 1965). Determined to prove that preschool educa-
tion could raise poor children's IQ scores and prevent school failure, Weikart 
convinced the Ypsilanti school district to let him begin an experimental preschool 
at the Perry Elementary School in 1962, which became the Perry Preschool 
Project. Initially seen as a form of remed,ial preschool intervention, the project 
combined the ideology of special education with early childhood education. 
Enabled by the county's forward-looking move of approving new funding for 
special education, Weikart realized that public money could be spent on three-
and four-year olds with special needs (Weikart, 2004). 

When Kam.ii joined the project in 1964, she immediately became inunersed in 
preschool, compensatory, and special education-all major influences on her later 
work. Sent into the Perry School neighborhood in the summer to recruit low-
income African-American three-year-olds whose low IQ test scores, most in the 
70-85 range, predicted they would have trouble in school, Kam.ii helped assign the 
children randomly for admission to the experimental preschool or a control group, 
to be followed longitudinally. Working with Perry Preschool social worker Norma 
Radin, Kam.ii realized that many African-American mothers living in difficult 
circumstances felt a strong need to protect their children from harm, and thus "over-
protected" and "shielded" them, compared to white middle-class mothers who 
wanted to expose their children to challenges and were freer to do so. In articles she 
published with Radin, Karnii described social class differences in the child rearing 
styles of African-American mothers and argued that social class, not race, was the 
important variable, providing more evidence that African-American children from 
low-income backgrounds would benefit from being in a preschool that would chal-
lenge them, in a safe environment (Radin & Karnii, 1965; Kamii & Radin, 1967). 

The Perry Preschool Project was designed to give three- and four-year-old 
at-risk African-American children the same kind of enriched preschool education 
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that middle-class children got in nursery school. The children attended three 
hours a day, five days week, for the length of the school year for two years, and got 
90 minute weekly home visits from their teachers, who had to be fully certified. 
Kamii did pre-tests and post-tests on the children. After one year, the Stanford-
Binet IQ test scores of the children in the program went up, way up, an average of 
15 points, which put them into the normal range, a big deal in an era when most 
psychometricians still believed that IQ was an inherited, fixed characteristic 
(Weikart, 2004, 52-54). 

After the second year, however, when the Perry Preschool children entered 
elementary school, their IQ test scores started to go down. Weikart wondered 
whether the Perry Preschool curriculum might be the problem. He had initially 
wanted a curriculum based on John Dewey's philosophy of active learning 
combined with the Perry Preschool teachers' training in traditional nursery school 
education, but was disappointed that the teachers did not seem to be doing much 
planning. The children were given lots of time for free play but were not getting 
any special academic help. During the first year of the program, after a little boy 
threw a chair across the room, the teachers realized that they needed to be more 
proactive. They began to give more guidance and verbal instructions, and talked 
to the children a lot, in what became known as a "verbal bombardment" approach 
(Weikart, 2004, 64-65). 

T;he Perry Preschool curriculum evolved further w!Jen Weikart discovered 
Piaget, while reading a review of J. McVicker Hunt's influential 1961 book 
Intelligence and Experience, which summarized Piaget's theories and emphasized the 
role of the environment in child development and education (Hunt, 1961). 
Weikart contracted for the teachers to be given Piaget workshops and studied the 
work oflsraeli preschool researcher Sara Smilansky, who focused on how teachers 
should ask disadvantaged children to plan what they were going to do in their 
play before they did it (Minkovitch, 1972; Smilansky, 1968). Weikart consulted 
with psychologist Robert Hess of the University of Chicago, who suggested that 
the children should review their play after each session. These ideas came together 
in the Perry Preschool's "plan-do-review" approach, in which children met 
with a teacher for about 10 to 15 minutes to plan their play, played for about 
45 minutes to an hour, and then met with the teacher again to review what they 
learned from their play (Weikart, 2004, 65-66). 

When Kamiijoined the Perry Preschool Project as a Research Associate in the 
second year of the program, she was dissatisfied with the curriculum, too. It still 
seemed like a traditional nursery school. When she asked the teachers what it was 
good for, they said language and emotional development. What about the "three 
Rs?" Kamii asked, knowing that the children needed help with literacy to do well 
in school. So Kamii started reading curriculum books, and found "generalities," 
"Nice, sweet generalities." Kamii had heard about the Direct Instruction, academic 
skills-based preschool program that Carl Bereiter and Siegfried Engelmann had 
started at the University of Illinois, but worried if children were having trouble 
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learning to read in first grade it would be much harder for them when they were 
three (Bereiter & Engelmann, 1966). 

When Norma Radin gave Kamii a copy of John Flavell's (1963) The 
Developmental Psychology of Jean Piaget, a scholarly exegesis on Piaget's theories, 
Kamii realized that she had found a "goldmine" that could be applied to early 
childhood education. She told Weikart that the Perry Preschool program curric-
ulum needed to be even more directly Piagetian. Using the language of compen-
satory education, Kamii was convinced that "disadvantaged" children had 
"cognitive deficits," as she later wrote in an article with a Perry Preschool research 
assistant, because they had not gone through the Piagetian stages. They needed a 
curriculum that would help them progress through "the transition from sensory-
motor intelligence to conceptual intelligence," so that they could acquire cogni-
tive skills (Sonquist & Kamii, 1967). 

To create a curriculum that focused on teaching specific Piagetian concepts, 
Kamii decided she needed to learn more, from Piaget directly. In June of 1965, 
when she graduated with her doctorate from Michigan, she gave herself the 
present of going back to Geneva. She got to Geneva just in time to hear Piaget's 
last lecture of the semester. Mesmerized, she could understand Piaget's French 
easily. While in Geneva, Kamii met David Elkind, who was finishing up a post-
doctoral fellowship. Elkind became an influential professor of early childhood 
educa,tion at the Eliot-Pearson School at Tufts University an,d would soon become 
one of the main "popularizers" of Piaget in the United States. She also met many 
other Piaget researchers with whom she would later collaborate, and was espe-
cially impressed by the work of Piaget's close colleague and co-author Barbel 
lnhelder, who planned the experiments that children were doing with objects, 
which became the basis for Piaget's increasingly complex theory of logico-
mathematical development (Beatty, 2009; Hseuh, 1997). 

When Kamii came back to the Perry Preschool project she started applying 
Piaget's theories in earnest. With Norma Radin, she wrote a framework for how 
Piagetian stages and sub-stages could form the basis of a preschool curriculum, 
and then translated the framework into activities. She showed the teachers how 
they could use regular nursery school activities to help children construct the 
Piagetian concept of object permanence with games in which the teachers hid 
objects, as Piaget had done with his children Jacqueline and Laurent. Kamii 
demonstrated how to make a duck out of clay, to help children understand that 
the duck was a "symbol" that "represented" a real duck. She told the teachers to 
ask the children to put blocks in order from smallest to largest, and to organize the 
doll corner so that the children would order the dishes and sort the doll clothes 
by size, to teach classification and seriation. She suggested asking the children to 
put a cup on the table and to jump over a rope, and what came next in the daily 
schedule of play-time, outdoor-time, and snack-time, to teach spatio-temporal 
relationships. She showed how asking the children what would happen when 
they pushed their juice cup or a block tower hard could be used to teach 
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cause-and-effect relationships. She demonstrated how pointing out that when a 
cookie was broken into two pieces it was still the same cookie, could be used to 
teach conservation of quantity. Almost everything in the nursery school environ-
ment, Kamii argued, could be manipulated to turn it into an opportunity for 
disadvantaged children to learn Piagetian concepts and further their cognitive 
development (Kamii & Radin, 1967; Sonquist & Kamii, 1967). 

Indicative of the kinds of tensions that erupt perennially in early childhood 
education over fine points of pedagogy, relations between Kamii, the teachers, and 
Wiekart became strained. The teachers objected that they were being told what 
was theoretically correct and incorrect and what to do in their classrooms. Since 
Kamii had not been a teacher, they thought that they knew more about the 
children's individual needs and how to plan for them than she did. Kamii 
objected that Weikart was not applying Piaget directly enough. Weikart decided 
that he would trust the teachers' judgment and that the Perry Preschool 
curriculum would never be a "strictly Piagetian-based program," it would be a 
"cognitively oriented curriculum." Kamii resigned from the Perry Preschool 
Project and left for a year of postdoctoral study in Geneva (Weikart, 1971; 
Weikart, 2004, 67). 

Kamii spent 1966-67 in Geneva taking courses with Piaget and Inhelder at the 
University of Geneva, where Kamii became completely immersed in Piagetian 
theory. She also began, doing Piagetian experiments with children herself.,Not 
thinking about what she would do next, Kamii was contacted by her Perry 
Preschool colleague Norma Radin, who had received a federal grant to start 
another preschool program in the Ypsilanti Public Schools. As Curriculum 
Director of the Ypsilanti Early Education Program for three years, Kamii continued 
developing Piagtian preschool activities. Her ideas about what to do radically 
changed. She read a 1964 article "Piaget Rediscovered," by Eleanor Duckworth, 
a Canadian Piaget researcher who would have a great impact on science educa-
tion for young children. After reading Duckworth, Kamii began worrying about 
trying to teach Piagetian concepts too directly. Duckworth said not to teach 
conservation by having children pour water back and forth from different sized 
beakers and asking questions or pointing out that the amount of water had not 
changed, let the children gradually discover it themselves. Piaget did not think 
that "intensive training of specific tasks" was useful, Duckworth wrote, because it 
did not affect children's general understanding (Duckworth, 1964). 

Duckworth, and especially Hermina Sinclair, a Dutch Piagetian from Geneva 
who came to consult in Kamii's Ypsilanti preschool program every year, convinced 
Kamii that her earlier ideas were wrong. Kamii realized that she had been doing 
what beginners did, trying to teach Piagetian tasks instead of understanding the 
larger processes of development. Sinclair told Kamii that teaching the tasks, hiding 
objects, and pouring of water back and forth, was like taking soil samples, fertil-
izing one sample, and sticking it back, instead of "fertilizing the whole field" 
(Kamii, 2008) As Kamii put it, it had become: 
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control group.Although the children's IQ test scores did not go back up, in third 
grade their achievement test scores and teacher ratings began to rise. In 1984, 
when they were 19, 59 percent of the former Perry Preschool children were 
employed, compared to only 32 percent of the group that had not attended 
preschool; 6 7 percent had graduated from high school or its equivalent compared 
to 49 percent; 38 percent compared to 21 percent had gotten college or voca-
tional training; only 31 percent compared to 51 percent had been arrested or 
detained; and only 16 percent compared to 28 percent had been assigned to 
special education. The Perry Preschool group also had higher earnings and only' 
about half as many teenage pregnancies (Berrueta-Clement, et al., 1984). Weikart 
and his associates calculated that every dollar invested in the Perry Preschool 
gained $7.01, mostly in savings on special education, prisons, and other costly 
public services. Although criticized by some statisticians, the figures circulated 
rapidly. Politicians listened.The Perry Preschool Project, with its Piaget-influenced, 
cognitively-oriented curriculum that Kamii helped design,. became a powerful 
model for why the United States needed to increase support for preschool educa-
tion (Berrueta-Clement et al., 1984; Schweinhart et al., 2005). 

Testing Piaget 

In the late 1960s and early 1970s, Karnii and other Piagetians mounted a chal-
lenge to behaviorism and the entire edifice of IQ testing that had dominated 
American psychology since the days of Lewis Terman at the beginning of the 
twentieth century. By the late 1960s, Piaget was becoming well-known in the 
United States, and Kamii was becoming known as a Piaget researcher. David 
Elkind's article "Giant in the Nursery - Jean Piaget;' made a splash in The New 
York Times Sunday magazine (Elkind, 1968). Test companies took notice. In 1969, 
the California Test Bureau, a division of McGraw-Hill, convened a conference to 
see if developmental and educational psychologists could develop a standardized 
Piagetian test, an Ordinal Scales of Cognitive Development, based on the kinds of 
problems Piaget gave children, to measure developmental and intellectual matu-
rity. Piaget and Inhelder were invited, as were many influential American psychol-
ogists, psychometricians, and early childhood educators, including Millie Almy of 
Columbia University's Teachers College, whose 1966 book Young Children's 
Thinking introduced many preschool educators to Piaget, and Selma Greenberg, 
who directed the Head Start program for African American families in the 
Mississippi Delta, and Kamii (Green et al., 1971). 

Held at the Monterey Institute for Foreign Studies, the conference began with 
an opening address by Piaget, in which he stated that he was not an expert on 
ordinal scales, a succession of tasks or questions designed to measure an individu-
al's performance compared to that of subjects in the group upon which the test 
was based. Nor was he sure, Piaget said through his translator Sylvia Opper, that 
ordinal scales really measured the abilities they purported to measure (Piaget, 
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1971). The second day of the conference, held at a hotel in Carmel, began with a 
paper by David Elkind comparing similarities and differences between Piaget's 
views on intelligence with those of psychometricians who used IQ testing. 

When Kamii found out that Siegfried Engelmann, who, in the early 1960s, 
with Carl Bereiter, had started a preschool for educationally disadvantaged chil-
dren, housed at the University oflllinois at Urbana-Champaign, was going to give 
a paper, she asked to give a comment on it.Antithetical to everything Piaget, and 
Kamii, stood for, Bereiter's and Engelmann's program, which developed into what 
is now known as Direct Instruction, was based on behaviorist methods for 
teaching academic content in language, reading, and arithmetic in short, tightly-
scripted, adult-centered lessons. In a lesson on the concept of weapons, for 
instance, the teacher shows the children a picture of a rifle, praises them if they say 
it is a gun, especially if they say it in a full sentence in standard English, and has 
the class repeat the rule and clap rhythmically saying "If you use it to hurt some-
body, then it's a weapon." "You use it to POW POW - hurt somebody," the 
teacher says, and after a series of sing-song question and answers, the preschoolers 
have supposedly been taught the concept of a weapon, in a quick, two-minute 
"teaching segment" (Bereiter & Engelmann, 1966, 105-110). 

Knowing that Engelmann would claim that he could teach Piagetian concepts 
directly, not through play, Karnii asked him if she could come to his preschool to 
test the children. To her surprise, he said yes. Kamii designed some clever experi-
ments that she thought would reveal that Engelmann's preschool children did not 
really understand physical knowledge about how the world worked, which Piaget 
said had to be learned through play with objects. So she got a big cake of 
Ivory soap that would float and a small bar of hard soap that would sink and 
some other objects, and designed questions to elicit the children's predictions 
and explanations. 

When Karnii and her Ypsilanti Early Education Project assistant Louise 
Derman arrived at Engelmann's preschool, they soon realized that Engelmann 
had taught the children basic rules, but that the children could not explain the 
rules. When asked whether a block would float, for instance, one little boy, Carl, 
said yes, "Because it is wood."When told it was heavy and allowed to feel it, Carl 
changed his mind, and put it in a pile of things that he thought would sink, instead 
of explaining the rule, as a child who understood the concept would. The pieces 
of soap were especially puzzling to the children. When they saw that the bigger 
piece of Ivory soap floated they were surprised and said things like "That's not 
what it's supposed to do." One little girl,Ann, said that both pieces of soap would 
sink, because they both were soap (Kamii & Derman, 1971, 130). Karnii and 
Derman concluded that their testing proved that children had to build up senso-
rimotor knowledge slowly, and that being in a preschool that let them do this was 
how it happened. 

When Engelmann gave his paper at the conference, which Kamii had not 
seen beforehand, Engelmann critiqued Piaget for lacking an explanation for how 
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children learned. Piaget's theory was nothing "more than a set of accurate descrip-
tions about the performance of children at different ages," Engelmann said. It 
might as well have been based on "learning-producing" rays from outer space. 
Piaget did not provide a theory that "clearly implies instruction, lack of instruc-
tion, or evaluation of instruction" (Engelmann, 1971, 120-121). 

Just as Kamii had expected, Engelmann claimed that he had successfully taught 
Piagetian conservation tasks directly, through short lectures. Engelmann had 
found, he said, that kindergarten children could learn the principle of conserva-
tion of quantity without playing with objects, without pouring water back and 
forth, seeing it poured, or even seeing a diagram ofit, "after 54 minutes ofinstruc-
tion, distributed over a 5-day period" (Engelmann, 1971, 126). It was simple to 
teach what Piaget called development, Engelmann claimed, children "are taught." 

In the response she gave after Engelmann's presentation at the conference, 
Kamii disagreed. Young children could not learn logic "without taking into 
account the natural developmental sequence that Piaget described." In fact, Kamii 
argued, the verbal rules Englemann had taught the children made it harder because 
they blocked the children's "intellectual contact" from coming to grips with the 
real objects. Engelmann had said that the Piagetian model was an inefficient way 
to teach. On the contrary Kamii said, imposing rules could mask children's 
multiple explanations, but not eliminate their intuitions, some of which were 
incorrect. The Piagetian approach to teaching, Kamii said, was not to leave chil-
dren alone, but to provide situations and materials through which children could 
build up knowledge interactively and thus progress to the next stage of develop-
ment (Kamii & Derman, 1971,142, 143,145,146). 

The confrontation between Kamii and Engelmann was a standoff. Engelmann 
said that he knew that his instructional methods needed to be improved. The 
problem, he argued, was that he had not taught a rule that would allow children to 
generalize sufficiently, so "faulty instruction" was a problem. Engelmann also gave 
a more basic answer, however, that he thought explained away some of Kamii's 
results. The reason the little girl Ann had had so much trouble with the soaps was 
"appallingly simple." She had been absent two of the days when compensating for 
changes in rectangular objects had been taught (Engelmann, 1971, 147, 126). 

Kamii had defended Piagetianism, at a conference Piaget himself had attended. 
While she had not convinced Engelmann that he was wrong, she got affirmation 
from Piaget's co-researcher Barbel Inhelder that Kamii had made some good 
points (Kamii, 2012). Engelmann continued to work on his behaviorist preschool 
methods, but behaviorism was on the wane. Cognitive-developmental models 
were rapidly becoming the dominant approach in preschool education. 

Back to Geneva 

Knowing that she needed to learn more about Piagetian theory, so that she could 
design better preschool curricula, in 1970 Kamii left Ypsilanti for good and went 
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back to Geneva for another postdoctoral year. This time she had been invited to 
do research at Piaget's International Center for Genetic Epistemology, a high 
honor. Each spring, Piaget would announce what the topic would be for the next 
year. Over the summer, research fellows dreamed up an experiment, a problem 
related to Piaget's announced topic. All summer the research fellows, Piaget's 
"slaves" as Kamii called them, of whom she was one, played with the apparatuses 
they were building, worrying if Piaget would approve them in the fall. 

Kamii designed a problem with a balance beam, in which children were to 
predict what would happen when they tried putting small metal washers at 
different points on the balance beam and explain why. Kamii brought her balance 
beam apparatus to the first session of the year, the first Monday in October, when 
research fellows had to present their plans. She was anxious. To her relief, Piaget, 
the Patron, as his students called him, approved of her experiment. Kamii took her 
apparatus to schools in Geneva, a researcher's paradise because Piaget had a 
standing arrangement that his researchers could simply walk into a school on any 
afternoon and announce to a teacher that they were going to take children out of 
the classroom to study them, a blanket permission that Kamii would later find 
very hard to get. 

Strong believers in collaboration, Piaget and Inhelder, who collaborated on 
everything themselves, insisted that researchers work in pairs, a habit Kamii 
continued in much of her own research. Kamii's partner for most of the years she 
kept coming back to Geneva was Sylvia Parrat. To get a feel for the range of devel-
opment, Piaget required researchers to start by interviewing a four-year-old, a 
six-year-old, and a ten-year-old, and then fill in more children of different ages to 
test the theory at different levels. Kamii and Parrat spent hours together talking 
about their research problems, did a year of one-day-a-week observations, and 
were critiqued by Piaget and other members of the seminar, weekly.At the end of 
the year there was a research symposium to which Piaget invited renowned senior 
researchers from around the world, at which the fellows presented their findings. 

Like that of other of Piaget's students, Kamii's research contributed directly and 
indirectly to Piaget's and Inhelder's own work. At the end of the year, Kamii and 
her partner would turn in about a 15-page report on their research, which Piaget 
and Inhelder would take up to their chalet in the mountains, along with the 
reports of the other "slaves." Kamii never knew where or if pieces of her research 
might turn up in Piaget's and Inhelder's books. Kamii and the other fellows were 
credited in references or acknowledgements, but the Patron acted as ifhe owned 
their work. Sometimes Kamii would barely recognize her research when she saw 
it later, in part because Piaget made up theoretical explanations written in long, 
dense, complicated sentences. Eventually, usually after about three years, Kamii's 
research would appear in some form in the Archives de Psychologie, the journal 
begun at the University of Geneva in 1902. Soon Kamii was asked to take charge 
of a research seminar on Piagetian methods herself, which she alternated teaching 
in the spring and fall at the University of Geneva for twelve years, with Eleanor 
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Duckworth, another Piaget disciple, during which time Kamii became more and 
more convinced that Piaget's ideas were scientifically correct. 

Playing with Numbers, Objects, and Games 

From the mid-1970s to 1980, while Kamii was going back and forth from Geneva, 
she collaborated with Rheta DeVries, another Piagetian psychologist and 
educator, to write three very influential books that helped make Kamii widely 
known in early childhood education. De Vries, who Kamii had met at one of the 
many Piaget conferences held in the United States throughout the 1970s, helped 
Kamii get a job at the University of Illinois at Chicago Circle. An elementary 
school teacher, DeVries had completed her doctorate in psychology at the 
University of Chicago under Lawrence Kohlberg, who became famous for 
applying Piaget's stage theory to moral development (De Vries & Kohlberg, 1987). 
As Kamii and De Vries heard stories from their Masters' students about terrible 
arithmetic teaching, Kamii and De Vries became convinced of the need for a 
book on Piagetian approaches to arithmetic for young children. Kamii knew that 
Piaget's theories were especially strong in the area oflogico-mathematical knowl-
edge, and that teaching reading was a crowded field, so she decided to focus on 
arithmetic. Kamii and De Vries had plenty of time to design Piagetian arithmetic 
teaching activities because Kamii lived in De Vries's apartment building in the 
Hyde Park section of the city. They tested their ideas in child care centers in 
Chicago, Evanston, and at the University oflllinois, Chicago Circle Preschool. 

In their 1976 book Piaget, Children, and Number, Kamii and DeVries asserted 
that everything about how young children were traditionally taught numbers was 
wrong. The names of numerals, number of things in a group, and how to count 
were arbitrary "number facts," the teaching of which was useless, even potentially 
harmful. It was rote memorization of arbitrary social knowledge, without real 
understanding. Numbers are not "out there" in numbers of objects. Children have 
to play with objects and order and group them mentally, Kamii and DeVries 
thought, and then see that "eightness" is a relationship. To understand eight or any 
other number, young children have to construct a concept of eight, and no 
amount of counting practice, or drill will help. Throw out all of"one, two, three," 
Kamii and De Vries, said, children have to play with objects to understand 
numbers, before they can go on to more complicated arithmetic (Kamii & 
DeVries, 1976, 7-10). 

Teachers should not just leave children alone, however, Kamii and De Vries 
said, but rather teachers should help children construct number concepts by 
thoughtfully using familiar objects and asking good questions.Arithmetic learning 
happened all of the time, not just during "math time." At snack time teachers 
should ask "Do we have enough cups for everyone?" or "Do we have too 
many cups?" Kamii and De Vries also questioned the usefulness of many existing 
math "manipulatives," as specially designed objects for children to use to learn 
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arithmetic are called. Cuisenaire rods, the colored wooden rods that come in 
multiples by length, Montessori's graduated materials, and most other math 
manipulatives did not help, Kamii and DeVries said, because young children 
understand number as "one of" an object, not that a longer object means more, or 
that two is included within a rod that is twice as long. 

It was especially important for children to check their own answers, Kamii and 
De Vries argued. Teachers should not give children the right answer or tell them 
that they are wrong, a very controversial notion in a field where getting the right 
answer had long been the goal. Instead, teachers should try to figure out how 
children themselves are thinking. Did the child get the right answer by accident? 
Did the child construct how to do it logically, but make a computational error? 
Getting the wrong answer for the right reason was better than getting the right 
answer for the wrong reason, Kamii and De Vries stated, flying in the face of how 
arithmetic was customarily taught (Kamii & De Vries, 1976, 11-26). 

Piaget, Children, and Number was an immediate success, even though it almost 
did not get published. When Kamii and De Vries sent the manuscript to the 
National Association for the Education ofYoung Children, NAEYC sat on it for 
a long time. Kamii thinks this was because it was more theoretical than books 
NAEYC usually published. When it finally came out, Kamii became famous in 
the early childhood education community and began giving talks to huge audi-
ences at preschool conferences. Despite the book's popularity, Kamii was dissatis-
fied. In the 1982 edition that she wrote on her own without De Vries, to "correct 
the errors and inadequacies" in the original volume, Kamii thanked Hermina 
Sinclair, and especially Eleanor Duckworth, for helping her see that teachers 
should not be explicitly teaching Piagetian tasks. In the second edition "teaching" 
numbers is in quotation marks, because "number is not directly teachable," Kamii 
says. "How precisely the child constructs number is still a mystery," Kamii wrote, 
just as how children learn language is a mystery (Kamii, 1982, 21, 25; Lascarides 
& Hinitz, 2000, 134). 

Essential to Kamii's approach and part of what made it so original was her 
emphasis on children's autonomy. Kamii had had an epiphany.Autonomy was the 
aim of education, not development, an issue about which she and DeVries 
disagreed. Many in the early childhood education community saw intellectual 
development as the goal. Kamii did not, and appended a keynote address she had 
given on autonomy to her 1982 Number in Preschool and Kindergarten. Like most 
Americans, Kamii had been deeply influenced by the events of the late 1960s and 
1970s. Martin Luther King Jr. was one of her biggest heroes, along with 
Copernicus. She praised former Attorney General Elliot Richardson for acting 
autonomously by defying his boss Richard Nixon in 1973 by refusing to fire 
Special Prosecutor Archibald Cox who was investigating the Watergate scandal. 
Piaget's theory of moral development explained why some people were able to 
act autonomously, Kamii argued. Piaget showed how children could construct a 
sense of autonomous morality, through interactions with other children and 
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adults, when children were given the opportunity to make decisions and experi-
ence the consequences of their decisions (Kamii, 1981). 

Following their book on number, Kamii and De Vries went on to write about 
physical knowledge, concepts about the way the physical world works that chil-
dren construct from playing with objects and observing reactions and transforma-
tions, another type of development that Piaget and Inhelder studied.As Kamii and 
DeVries explained in their 1978 book, Physical Knowledge in Preschool Education, 
originally published by Prentice-Hall, not NAEYC, the Piagetian approach 
avoided the "verbalism" of traditional science education. In a traditional textbook 
lesson on crystals, for instance, the teacher shows children crystals and rocks; 
explains what they are; gives children salt, bluing, water, and ammonia; and in one 
hour crystals begin to form. As with their book on number, Kamii learned from 
observing real teachers and children how children could learn science more effec-
tively. Kamii and De Vries encouraged teachers to let children invent experiments 
on their own, add different things together and predict what might happen, so 
that the children would be surprised by some of the results, the way real scientists 
would be (Kamii & De Vries, 1983, 3-4). 

As with understanding of the properties of number, understanding physical 
knowledge did not develop by leaving children alone, Kamii and De Vries stated. 
Quoting from The Having of Wondeiful Ideas by Eleanor Duckworth, Kamii and 
De Vries argued that content was important, children had to know enough about 
something to be able to think of other things to do and ask more complicated 
questions. But, harking back to Engelmann's attempts to directly teach floating 
and sinking, Kamii and DeVries said that children made "absurd statements 
precisely because" they "tried to use the specific bits of verbal knowledge that had 
been stuffed into" their heads. Instead, for example, teachers could give children 
boards and rollers to sit on and stand on to experience different kinds of move-
ment relationships (an idea Kamii had gotten from a book on the history of engi-
neering that described how rollers and boards were used to build the pyramids); 
give children balls to aim at different block towers to observe ricocheting and 
other effects; build inclines from blocks; set up pendulums; and provide for water 
play (Kamii & De Vries, 1983, 21, 31,311). 

In their third book together, Group Games in Early Education (1980), Kamii and 
De Vries emphasized what was becoming known as "constructivism," the notion 
that children constructed knowledge themselves through interactions with the 
environment, peers, and teachers, especially through play. In a foreword to the 
book, Piaget wrote that play was "a particularly powerful form of activity that 
fosters the social life and constructive activity of the child," and noted that Kamii 
and De Vries had been inspired by his famous study of children playing marbles 
from his 1932 book The Moral Development of the Child. Filled with long quota-
tions from Piaget's writings, Group Games in Early Education, also contained a 
single-authored appendix by Kamii in which she explained why Piaget's construc-
tivism was scientifically-derived (Kamii, 1980). Although not a panacea, play, 
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FIGURE 11.1 Jean Piaget observing Constance Kamii facilitate young children's play 
with manipulatives at the Perry Elementary School,Ypsilanti, Michigan, 
October 1967. (Personal collection of Constance Kamii) 

Kamii said, was the best way for children to learn, construct knowledge, and 
become morally autonomous thinkers, and games were a great way for children 
to do this. The book also contained a photograph taken when Piaget visited 
Kamii in Chicago while he was on a trip to receive an honorary degree from the 
University of Michigan. 

Kamii and De Vries said that they wrote Group Games in Early Education in part 
because they thought that the pendulum had swung "too far from group instruc-
tion to overly individualized instruction." They also thought that the educational 
benefits of playing games were undervalued. Many teachers and principals were 
afraid of using group games because "parents complain when children play games 
and do not bring worksheets home," Kamii and De Vries said. Learning from 
games was an "alternative to traditional, academic methods," and could be useful 
with older children, as well, although "instruction" became "increasingly 
necessary and desirable as the child grows older, but older students would learn 
more if they had constructed knowledge when they were young" (Kamii & 
De Vries, 1980, xii, 33). 

Playing games raised the thorny issue of competition, which Kamii tackled 
head on in a single-authored chapter. She knew that most preschool teachers 
objected to group games because they were competitive, because they thought 
there was "already too much competition in our society" and in the upper grades, 
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because children who lost got upset, and because children should compete with 
themselves, not with each other. Kamii said that teachers could help children see 
that they were comparing performances, not competing for a "thing," and that 
teachers could handle competition more casually, by saying that it was OK to lose, 
so that children did not become obnoxiously boastful. As to competition in the 
world, the games she and De Vries were suggesting, Kamii wrote, were different 
because the children decided and agreed on the rules, with help from the teacher, 
and did not get rewards or prizes.As to feeling badly about losing, Kamii said that 
teachers should stress that it was just a game, that the loser was not "inferior, 
incompetent, or worthy of rejection," and not force children who did not want to 
play. Teachers should help children develop into "fair players" who could "govern 
themselves" and learn how to ''judge their own success." Preschool was a good 
time to begin this process creatively through games such as block races, tag, 
marbles, pin the tail on the donkey, card games, and board games (Kamii & 
DeVries, 1980, 189, 197). 

Enormously successful, the books Kamii and DeVries wrote on number, 
physical knowledge, and group games became classics in early childhood educa-
tion both nationally and internationally. With Japanese, Korean, Spanish, 
Portuguese, and Chinese editions, Kamii's work did much to extend Piagetian 
ideas throughout the world. 

Reinventing Arithmetic 

' After revolutionizing the way many preschool teachers thought about how young 
children learned about numbers, physical science, and games, Kamii mounted an 
assault on how all of arithmetic should be taught from preschool to third grade. 
When, in the early 1980s, Kamii moved up into the primary grades-the sanctum 
sanctorum of"the basics," the three "Rs;' the bedrock of American education-she 
encountered more resistance. Her ideas challenged assumptions that had been in 
place since the days of one-room schoolhouses in the 1800s.This was territory into 
which other developmental psychologists had trod, as well, with little lasting impact. 
In the early 1900s, the father of developmental psychology G. Stanley Hall and 
progressive educator John Dewey had tried to make arithmetic instruction more 
natural and practical, with little success in the public schools, where the texts and 
testing of educational psychologist Edward L. Thorndike ruled the day (Beatty, 
2006; Cline, 1982; Finkelstein, 1989; Monroe, 1917). The Thorndike Arithmetics laid 
out how arithmetic should be directly and efficiently taught through practice, word 
problems, and drills, and how children's learning should be scientifically measured 
by school achievement tests (Beatty, 2006; Clifford, 1984; Thorndike, 1917, 1922). 
As Kamii soon discovered, this behaviorist approach, which dominated elementary 
education in the United States, presented a formidable obstacle to her research. 

In a sequence of four books and three videos published by Teachers College 
Press between 1984 and 2000, Kamii laid out a completely new approach to 
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teaching arithmetic, in which children constructed arithmetical concepts 
themselves with the help of their teachers. Although similar in some ways to the 
"new math" of the 1960s, the revolution in math teaching designed by college 
math professors, Kamii's methods were based on Piaget's theory of cognitive 
development and collaboration with elementary school teachers. She proposed 
the radically progressive idea that teachers and parents and schools should trust 
that children had the ability to learn math through normal, universal processes of 
development, and that if allowed to do so, they would be confident about their 
abilities and not suffer from math anxiety or phobia. "Every normal student is 
capable of good mathematical reasoning," Kamii quoted from Piaget, "if attention 
is directed to activities of his interest, and ifby this method the emotional inhibi-
tions that too often give him a feeling of inferiority in lessons in this area are 
removed" (Piaget, 1973, 98-99: Kamii, 2000, xii). 

Kamii called her approach "reinventing arithmetic," a term she got from 
Eleanor Duckworth, a notion Kamii based on her own research with children in 
Geneva. Kamii's new line of research began with one teacher, Georgia De Clark, 
the only first grade teacher in Kamii's Introduction to Piaget course at the 
University of Illinois, whom Kamii credited as the second author of the 1985 
edition of Young Children Reinvent Arithmetic. Constance Kamii and her sister 
Mieko Kamii from Wheelock College in Boston also collaborated on research on 
how children learned single digit and double digit addition, which formed part of 
the basis for Kamii's new work. The Kamiis said that children should not memo-
rize "addition facts" such as 3 + 5 = 8 or be taught to "carry" from the ones 
column to the tens column to the hundreds because this was not the way children 
naturally did addition. On their own, young children did single digit addition up 
to ten, two ways, either by "counting on" by starting at three and then saying 
"four, five, six, seven, eight," or by" counting all," counting up to three fingers and 
then going on to count five more, and then going back to count all 8 fingers, thus 
combining the group of three and the group of five they had just counted. For 
double digit addition for sums over 10, Kamii and her sister found that some 
children rounded up to ten first, as many modern arithmetic texts now recom-
mend (Kamii, 1985, 68; Kamii, 2000, 84). However children approached addition 
problems, Kamii and her sister argued, the children came up with strategies on 
their own. 

Teachers' reliance on worksheets was one of the stumbling blocks Kamii had 
to overcome. Georgia DeClark told Kamii that she had been teaching addition 
successfully to the children in her first grade class using traditional methods-
memorization of"addition facts,""carrying," drills, and worksheets-and that this 
was the way the curriculum she had to cover was supposed to be taught. When 
Kamii visited De Clark's classroom she asked De Clark if she would be willing to 
try teaching arithmetic for a year using only activities from the children's daily life 
and games, no direct instruction, no worksheets, no school math series. DeClark 
said that she could not promise to make such a "drastic change," but that she 
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would "give it a try" and see how far she could go. Karnii said that DeClark 
should rely on her own judgment, of course, and do what she thought was 
necessary if she did not think that Kamii's Piagetian methods were working. 
Kamii promised to visit DeClark's classroom every week and help her all the way 
(Kamii, 1985, xiii; DeClark, 1985, 195). 

DeClark worried that her children would not learn the basic arithmetic they 
needed to know with Kamii's methods. DeClark was also worried about how to 
convince her principal, what she would say to other teachers, and what she would 
tell parents. DeClark's principal said she could go ahead as long as she reached the 
achievement goals set by the standard curriculum by the end of the year; the other 
teachers were busy worrying about their own classes. DeClark explained the new 
approach to the parents, a little more confidently than she actually felt, and told 
them to play games at home with their children. They did not challenge her. So 
at the beginning of the 1980-81 school year, DeClark started using the group 
games Kamii suggested: Tic Tac Toe, Concentration, Card Dominoes, War, Piggy 
Bank, Double War, Subtraction Lotto, Sorry, Double Parcheesi, and others. The 
children_ loved the games. They focused on them more intently than they had on 
worksheets and made decisions autonomously,just as Kamii had hoped. 

DeClark was still worried, however. On October 29th she gave the children an 
addition worksheet. They did well on it, just as Karnii had told her they would. 
DeClark gave out four worksheets in all, and found to her relief that her children 
could do paper and pencil addition problems on worksheets just fine. Kamii told 
DeClark that she was probably the only first grade teacher in a public school in 
America who gave out only four worksheets that year (DeClark, 1985, 195-227). 

When Kamii tested DeClark's children on single-digit arithmetic problems, 
she found that they did as well as a control group of children the same age in 
another first grade class who had studied arithmetic the traditional way.About the 
same number in both groups could do double-digit addition problems. DeClark's 
children had taught themselves arithmetic, by playing games, without lessons, 
worksheets, flash cards, or adults pushing them. They could explain how they got 
their answers. The children in the control group could not. Kamii and DeClark 
repeated the experiment again the next year with the same results (Kamii, 1985, 
231-246). 

Kamii felt vindicated. She had proved that first graders could reinvent arith-
metic on their own. Now she wanted to see if second graders could do it, too. She 
needed two teachers, one each in first and second grade who were willing to use 
Piagetian methods. She could not stay at DeClark's school, however, because the 
principal said he reshuffied the students each year and would not keep DeClark's 
class together.When Karnii tried to find another principal she encountered resis-
tance. Teachers from her graduate course were eager to try the new methods, but 
when Karnii talked to their principals, the principals asked one question: Can you 
promise good achievement test scores? Kamii explained her approach and offered 
to show her data. None of the principals looked at the data.When Kamii honestly 
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said that she could not absolutely guarantee good test scores, all of the principals 
said "No." Some asked her if she knew that their jobs depended on getting good 
test scores. Not one principal in the Chicago area agreed to lei Kamii try her 
arithmetic methods in his school (Karnii, 1989, vii). 

Stymied, Kamii was determined to prove that the preschool arithmetic 
methods based on Piaget and play that she had developed would work with 
second graders. She was receptive when she met Milly Cowles, the Dean of the 
School of Education at the University of Alabama in Birmingham, 'who told 
Kamii that public schools in the South were much more open to university-based 
experimenters than public schools in the North. Frustrated in Chicago, Kamii 
visited Birmingham and moved there in January of 1984, so that she could 
continue her research. By September, she had a school, the Hall-Kent School in 
Homewood, in an integrated, moderate-income Birmingham suburb, a supportive 
school superintendent, Robert Bumpus, and an enthusiastic principal, Gene 
Burgess, who was so excited about Kamii's research that he wanted her to try it at 
all grade levels in his school. Burgess thought that the math program he was using 
was not working, lmew about Piaget's work, and never asked Karnii about test 
scores. Kamii had never met a principal like this. Although the teachers were 
skeptical at first, Karnii visited their classes and met with them often. Eventually 
ten teachers signed on, four in kindergarten and three each in first grade and 
second grade (Karnii, 1989, vii-viii). 

Karnii knew how different her approach. was from the goals and methods of 
traditional math texts for second grade. The Harcourt, Brace,Jovanovich text that 
the Homewood teachers were using required that number facts, addition of whole 
numbers, subtraction of whole numbers, multiplication of whole numbers, divi-
sion of whole numbers, fractions, measurement, time, money, geometry, graphing, 
probability, statistics, and problem solving be taught directly and incrementally, 
with children writing out correct answers. Kamii had to prove that second graders 
could learn these concepts and computational skills through constuctivist, play-
based methods instead (Abbott &Wells, 1985, 26; Karnii, 1989, 3, 45, 54). 

Rather than beginning with specific objectives, as traditional arithmetic 
programs did, Kamii derived her objectives from carefully observing the children, 
in the tradition of progressive preschool education going back to the nursery 
school movement of the 1920s, in which Piaget was imbued from his original 
work at the nursery school at the InstitutJean-Jacques Rousseau (Beatty, 2009). In 
her 1989 book Young Children Continue to Reinvent Arithmetic, 2nd Grade, written 
with teacher Linda Joseph, Kamii stated that she eventually arrived at five objec-
tives: addition of one-digit numbers, place value and addition of two-digit 
numbers, subtraction of one- and two-digit numbers, multiplication, and division. 
Instead of formally teaching place value first as arithmetic texts recommend, Kamii 
and the teachers let the children learn it as they did addition (Kamii, 1989, 63). 

From her observations, Karnii found that the traditional order of arithmetic 
teaching-addition, subtraction, multiplication, and division-was not how children 
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reinvented it. Psychologists from the beginning of the twentieth century had been 
debating the order of arithmetic teaching. In 1911, G. Stanley Hall said that arith-
metic learning, what he called "arithmogenesis;' was biologically programmed into 
young children, and should be left to develop naturally, somewhat as Kamii argued 
(Beatty, 2006; Hall, 1911). In fact, like Hall, in a 1987 article in Arithmetic Teacher, 
Kamii said that children were "born with a natural ability to think and to construct 
logicomathematical knowledge" (Kamii, 1987).John Dewey argued that children 
learned arithmetic by constructing concepts through everyday activities, another 
approach Kamii used (Beatty, 2006; Dewey, 1896). Kamii found that subtraction was 
much harder for children than multiplication and argued that multiplication, not 
subtraction, should come after addition. 

Like Piaget,Jerome Bruner, Eleanor Duckworth, and other progressives in the 
science and math curriculum reform movement for older children in the 1960s, 
Kamii thought that teachers should let children arrive at answers themselves, not 
correct children when they were wrong, and encourage children to discuss how 
they got their answers. As with first graders, Kamii suggested that Linda Joseph's 
second graders learn through games and everyday activities, with the addition of 
teacher-initiated discussions of computation and story problems. Joseph would 
put 18 + 13 on the board, ask the children what they thought was a good way to 
solve it, write their suggestions on the board, and listen to the children's reasons 
for agreeing or disagreeing with each other's answers. She would not tell them the 
right answer or correct wrong answers.When some children got the right answer, 
other children would agree or disagree, and later, sometimes four or seven months 
later, would reinvent double column addition on their own and be able to say why 
the right answer was right (Kamii, 1989, 75-79). 

Teachers had to be frustrated with traditional methods to be willing to give 
Kamii's radical approach a tiy.At first, like Georgia DeClark, Linda Joseph was not 
convinced. When Kamii visited her classroom, she told Joseph that her children 
were "not thinking." Joseph had thought this herself sometimes and decided to try 
Kamii's approach. Joseph stuck with Kamii's Piagetian, play-based methods with 
the same group of children for four years. After surviving the first year without 
workbooks and seeing that the children were doing well on tests, Joseph 
was convinced that games and discussions were better than drill sheets. By the 
third and fourth year, Joseph was asking her students what they would like to 
work on, telling time or subtraction, or something else, and letting them choose. 
She had gone through a "metamorphosis" as a teacher, she said Goseph, 1989, 
151-156). 

As in Chicago, Kamii was able to prove that her child-centered, constructivist 
approach worked, based on the results of standardized tests.When Kamii compared 
the performance on the Stanford Achievement Test of second graders at the 
Hall-Kent School, who had learned through her methods, to comparable second 
graders in another school who had not, she found that their standardized 
test scores were about the same, but when asked to explain their answers the 
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Hall-Kent children did much better. The mean Stanford Achievement Test Total 
Mathematics Score in percentiles for the Hall-Kent second graders was 79; the 
score for the children in the other school was 85 or above. But the other school 
enrolled children from higher socio-economic backgrounds, so the scores were 
comparable, Kamii argued. In contrast, when interviewed orally, the Hall-Kent 
children could explain the arithmetic they had invented and why; the other chil-
dren could not. Kamii also made up a paper-and-pencil Math Sampler test of her 
own in which the children wrote out their answers and showed how they got 
them, instead of just filling in a blank. On this test, 48 percent of Hall-Kent second 
graders correctly solved an addition problem on four double-digit numbers 
adapted from the National Assessment of Educational Progress, the "gold 
standard" achievement test given to a randomized sample of American children, 
the exact percent of third graders who got the problem right on the national 
assessment (Kamii, 1989, 159,169). 

Satisfied that second graders could reinvent arithmetic as first graders did, 
Kamii moved on to third grade. In her 1994 Young Children Continue to Reinvent 
Arithmetic, 3rd Grade, which she wrote with the help of third-grade teacher Sally 
Jones Livingston from the Hall-Kent School,Kamii continued to stress the impor-
tance of Piagetian constructivist, play-based methods. Kamii included examples of 
more group games, and meticulous, detailed descriptions of children's own 
problem-solving techniques. As in her earlier books, when comparing classes 
taught by her methods versus traditional methods, Kamii found that the children 
who had been taught arithmetic for three years using her methods were "better 
in logical and numerical reasoning" and "better thinkers when they are encour-
aged to do their own thinking" (Kamii, 1994, 207). 

In this third book, Kamii set out the most controversial of all of her research on 
how young children learn and should be taught arithmetic. After introductory 
chapters on Piaget's theory oflogico-rnathematical knowledge and on the history 
of computational techniques going back to the Hindus and Romans, she wrote 
about "The Harmful Effects of Algorithms."Teaching children algorithms, such as 
18 + 17 = 35, actually hurt children's ability to learn arithmetic, Kamii argued, for 
three reasons. Algorithms forced children to "give up their own numerical 
thinking;" they "untaught" place value and hindered "children's development of 
numerical sense;" and they made children "dependent on the spatial arrangement 
of digits (or paper and pencil) and on other people" (Kamii, 1994, 33). For instance, 
in addition, subtraction, and multiplication, algorithms forced children to go from 
right to left, but Kamii observed that when children invented how to solve these 
types of problem on their own, they always, she said, went from left to right. In 
division, it was the opposite. With algorithms, Kamii said, children forgot how to 
use place value and often made illogical mistakes, because they added "all the digits 
as 1s" (Kamii, 1994, 36) .And by using algorithms, children would sometimes avoid 
trying to solve a problem altogether because they felt dependent on their teachers, 
or on "paper and pencil" arithmetic (Kamii, 1994, 47). 
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Kamii's Impact 

The impact of Constance Kamii's research on Piagetian theory and pedagogy, 
especially on teaching arithmetic, continues to be felt in preschool and primary 
education today She translated Piaget's abstruse ideas into practical activities for 
teachers, activities that preserved and extended the constructivism of Piaget's 
theory while remaining grounded in actual classroom application. Kamii was one 
of a handful of researchers who instantiated Piaget into preschool education, after 
his psychology had been rejected in academia. Her approach to teaching arith-
metic was highlighted in the "bible of preschool education," Sue Bredekamp's 
ubiquitous 1987 Developmentally Appropriate Practice in Early Childhood Programs 
Serving Children From Birth Through Age 8. Kamii was also mentioned in Bredekamp 
and Carol Copple's revised 1997 edition, though not in the most recent 2009 
edition, although it could be argued that by now many of Kamii's ideas have 
become so widely accepted that they no longer require specific citation 
(Bredekamp, 1987; Bredekamp and Copple, 1997; Copple and Bredekamp, 2009). 
Many ofKamii's books are still in print, sell well, and have been released in innu-
merable international editions. 

Kamii's legacy in arithmetic teaching can still be felt in the primary grades, as 
well.An expanded version ofher chapter on "The Harmful Effects of Algorithms" 
was reprinted in the National Council of Teachers of Mathematics Yearbook in 
1998, where it provoked huge controversy (Kamii & Dominick, 1998). Many of 
Kamii's ideas about how to teach arithmetic through constructivist methods were 
published in journals of the National Council ofTeachers ofMathematics,such as 
Teaching Children Mathematics and the Journal of Research in Mathematics Education, 
where one of her co-authored reports appeared as recently as 2010, giving Kamii's 
ideas wide currency (Kamii & Russell, 2010). Textbook designers adopted some 
of Kamii's methods, especially TERC, whose widely-used series Investigations in 
Number, Data, and Space, developed in the 1990s, incorporated much of Kamii's 
philosophy. In fact, Investigations and Kamii's ideas about the superiority of child-
centered, constructivist arithmetic teaching were at the center of the "math wars" 
that raged in the 1990s and reverberate today. 

In her 80s and still going strong, Kamii has an abiding faith in the power of 
Jean Piaget's psychology as the scientific basis of education. She has devoted her 
long life to promoting constructivist approaches to education for young children 
from preschool through the primary grades and still wants to find a 4th grade class 
in which to do more research on her Piagetian approach to teaching arithmetic. 
She told me that she would also like to get back in touch with Siegfried Engelmann 
and retest some of the students taught via his Direct Instruction to prove once and 
for all that she and Piaget are right about how children learn. It is hard to imagine 
modern early childhood education without the games, math manipulatives, and 
other child-centered methods that Constance Kamii encouraged preschool 
teachers to use.A giant in the debate over play that still rages today, Kamii remains 
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firmly convinced that young children should be given the opportunity to learn 
autonomously. 
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The Personal Road to 
Reinventing Mathematics 
Education  
Math education has fascinated me for a very long time. I was always good at 
arithmetic and despite having a pretty bleak elementary school experience; I 
could do what they called, “math.” Test scores in the 6th grade indicted that 
I was mathematically gifted and earned me a place in something called 
Unified Math. “Unified” was an accelerated course intended to rocket me to 
mathematical superiority between grades 7 and 12. Rather than take discrete 
algebra, geometry, trigonometry, etc., Unified Math was promised as a high-
speed roller-coaster ride through various branches of mathematics. 

Then through the miracle of mathematics instruction I was back in a low 
Algebra track by 9th grade and limped along through terrible math classes 
until my senior year in high school. In 12th grade, I enrolled in a course 
called, “Math for Liberal Arts.” Today this course might be called, “Math 
for Dummies Who Still Intend to Go to College.” I remember my teacher 
welcoming us and saying, “Now, let’s see if I can teach you all the stuff my 
colleagues were supposed to have taught you.” 

This led to two observations: 
1. Mr. O’Connor knew there was something terribly wrong with

math education in his school.

2. I looked around the room and realized that most of my
classmates had been in Unified Math with me in 7th grade.
These lifeless souls identified as mathematically gifted six
years ago were now in the “Math for Dummies Who Still
Intend to Go to College” class. If this occurred to me, I
wondered why none of the smart adults in the school or district
had observed this destructive pattern?
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Two things I learned in school between 7th and 12th grade kept me sane. I 
learned to program computers and compose music. I was actually quite good 
at both and felt confident thinking symbolically. However, majoring in 
computer science was a path closed to me since I wasn’t good at (school) 
math – or so I was told. 
 
I began teaching children in 1982 and teachers in 1983. I was 18-19 years 
old at the time. While teaching others to program, I saw them engage with 
powerful mathematical ideas in ways they had never experienced before. 
Often, within a few minutes of working on a personally meaningful 
programming project, kids and teachers alike would experience 
mathematical epiphanies in which they learned “more math” than during 
their entire schooling. 
 
In the words of Seymour Papert, “They were being mathematicians rather 
than being taught math.” 
 
Teaching kids to program in Logo exposed me to Papert’s “Mathland,” a 
place inside of computing where one could learn to be a mathematician as 
casually as one would learn French by living in France, as opposed to being 
taught French in a New Jersey high school class for forty-three minutes per 
day. 
 
I met Seymour Papert in 1985 and had the great privilege of working with 
him for the next 20+ years. 
 
Papert was a great mathematician with a couple of doctorates in the subject. 
He was the expert Jean Piaget called upon to help him understand how 
children construct mathematical knowledge. Papert then went on to be a 
pioneer in artificial intelligence and that work returned him to thinking about 
thinking. This time, Papert thought that if young children could teach a 
computer to think (via programming), they would become better thinkers 
themselves. With Cynthia Solomon and Wally Feurzig, Papert invented the 
first programming language for children, called Logo. That was in 1968. 
 
What makes Papert so extraordinary is that despite being a gifted 
mathematician he possesses the awareness and empathy required to notice 
that not everyone feels the same way about mathematics or their 
mathematical ability as he does. His life’s work was dedicated to a notion he 
first expressed in the 1960s. Instead of teaching children a math they hate, 

http://dailypapert.com/
https://vimeo.com/44907186
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why not offer them a mathematics they can love? 
 
As an active member of what was known as the Logo community, I met 
mathematicians who loved messing about with mathematics in a way 
completely foreign to my secondary math teachers. I also met gifted 
educators who made all sorts of mathematics accessible to children in new 
and exciting ways. I fell in love with branches of mathematics I would never 
have been taught in school and I understood them. Computer programming 
was an onramp to intellectual empowerment; math class was a life sentence. 
 
It became clear to me that there is no discipline where there exists a wider 
gap than the crevasse between the subject and the teaching of that subject 
than between the beauty, power, wonder, and utility of mathematics and 
what kids get in school – math. 
 

Papert has accused school math of “killing something I love.” 
 
Marvin Minsky said that what’s taught in school doesn’t even deserve 
to be called mathematics, perhaps it should just be called “Ma.” 
 
Conrad Wolfram, says that every discipline is faced with the choice 
between teaching the mechanics of today and the essence of the 
subject. Wolfram estimates that schools spend 80% of their time and 
effort teaching hand calculations at the expense of mathematics. That 
may be a generous evaluation. 

 
Over the years, I’ve gotten to know gifted mathematicians like Brian 
Silverman, David Thornburg, Seymour Papert, Marvin Minsky, and Alan 
Kay. I’ve even spent a few hours chatting with two of the world’s most 
preeminent mathematicians, John Conway and Stephen Wolfram. In each 
instance, I found (real) mathematicians to embody the same soul, wit, 
passion, creativity, and kindness found in the jazz musicians I adore. More 
significantly, math teachers often made me feel stupid; mathematicians 
never did. 
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Time for Action 
The 1999 National Council of Teachers of Mathematics Standards said, 
“50% of all mathematics has been invented since World War II.” This is the 
result of two factors; the social science’s increasing demand for number and 
computing. 
 
These new branches of mathematics are beautiful, useful, playful, visual, 
wondrous, and experimental. Computing makes some of these domains 
accessible to even young children, and yet you are unlikely to find the likes 
number theory, chaos, cellular automata, fractal geometry, topology… in the 
K-12 math curriculum. 
 
Hell, I dream of a day when a math textbook uses the symbol for 
multiplication used on computer keyboards for a half century. It makes my 
head explode when a high school student doesn’t know how to ask a 
computer to multiply two numbers. 
 
Since No Child Left Behind, parents, politicians, and educators have been 
engaged in a death match known as the Math Wars. The prescribed 
algorithmic tricks proscribed by The Common Core have thrown dynamite 
on the raging fire about how best to teach math. Ignorance, fear, and 
superstition are a volatile brew and impediment to learning. 
Conrad Wolfram estimates that 20,000 student lifetimes are wasted each 
year by school children engaged in mechanical (pencil and worksheet) 
calculations. Expressed another way, we are spending twelve years 
educating kids to be a poor facsimile of a $2 calculator. Forty years after the 
advent of cheap portable calculators, we are still debating whether children 
should be allowed to use one. 
 
We are allowing education policy and curriculum to be shaped by the 
mathematical superstitions of Trump voters. Educators need to take 
mathematics back and let Pearson keep “math.” 
 
  

http://www.stager.org/articles/mathwars.html
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Hard, Not Fun 
When Barbie said, “Math is hard,” the politically-correct class expressed 
their faux outrage, but Barbie was speaking a ubiquitous truth only tacitly 
acknowledged by the brave or those severely damaged my school math. If 
math is hard, fixing mathematics education is even harder. 

Study after study tell us that kids hate math, computers are less likely to be 
used in a math class than anywhere else in school, teachers have little 
confidence in their own mathematical abilities and were poor math students, 
formidable gender gaps still exist – even the stupid test scores by which 
some measure “achievement” are static or worse. 

Faced with an abundance of research, personal history, and good old-
fashioned intuition while screaming from the rooftops that math education is 
a shambolic failure, we just double down on what does not work. 

Hope 
Against this backdrop of panic, misery, and despair there is room for 
optimism. 

There is a renewed attention being paid to the importance of S.T.E.M. and 
S.T.E.A.M. 

We live in a complex society awash in data. Citizenship depends on strong 
mathematical thinking and modeling skills. 

Computational power has never been cheaper, easier to use, or portable. 
Today, you can ask your phone any question found in the K-12 math 
curriculum and receive an immediate answer. It can even “show all work.” 
How will math education respond to this reality? 

The maker movement has reenergized timeless craft traditions and 
supercharged such creative human expression with new tools and 
computational materials. 

Kids are miserable. Parents are fed-up. They are not only opting out of 
standardized testing, but rejecting that which is tested and the way it is 
taught. 

©	2015	Gary	S.	Stager,	Ph.D.	
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Why Progressive Educators Should Care About Reinventing 
Mathematics Education 
I had a conversation with Dr. Papert in 2004 in which he was on-fire about 
the need to revolutionize math education with all the urgency our society 
can muster. When I asked if his focus on math education was because he 
was a mathematician, Papert rattled off more than a dozen reasons why this 
was a priority. 

One argument in particular stayed with me while I have forgotten others. 

Papert said that no pedagogical innovation of the past century has had any 
real impact on math education and if that were not disconcerting enough, it 
ultimately meant that in practice, no matter how progressive or learner-
centered a school aspired to be, there was one point in the school day when 
“coercion was reintroduced into the system.” Math class was when kids felt 
badly about themselves and were being taught irrelevant tricks they might 
need one day. 

Papert argued that this scenario was corrosive to any other constructive 
efforts undertaken by a school, eventually undermining efforts like project-
based learning, authentic assessment, student led inquiry, and other aspects 
of constructivist teaching. There is no way to make a noxious math 
curriculum more palatable. 

Papert would ask how math class could feel more like art class, where 
students would become lost in their work, think deeply, act creatively, and 
produce an artifact they were proud of? 

Most discussions of math education define “reform” as devising a clever 
new teaching trick or test intended to fix the kid and make them understand 
what’s in a textbook relatively unchanged since the advent of movable type. 
This is the time for action. 
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